CORD: Energy-efficient Reliable Bulk Data Dissemination in Sensor Networks

報告者:郭逸旻 出處:INFOCOM 2008

Outline

- Introduction
- Related work
- CORD design
- Protocol evaluation
- Conclusion

INTRODUCTION

- Reprogramming problem?
 - Updating their software.
- Reliable bulk data dissemination protocol
 - 1. These protocols is that the data object is propagated from the sink to the rest of the network in a neighborhood by neighborhood fashion.

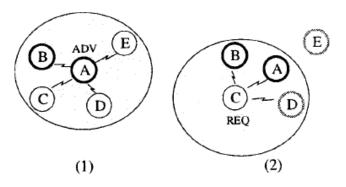
Ex : Deluge, MNP, MOAP

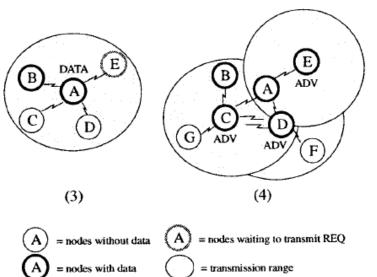
INTRODUCTION

- 2. In contrast, in the second category of protocols is divided into two distinct phases.
 - First phase : object is reliably propagated from the sink to the core nodes.
 - Second phase :core nodes disseminate the object to their neighboring non-core nodes in parallel.
 Ex : CORD , Sprinker

4

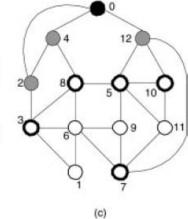
INTRODUCTION

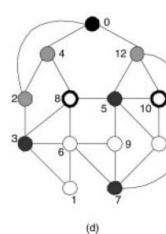

- CORD (COre based Reliable Dissemination)
 - Construct a core for data dissemination.
 - Core node and non-core node.
 - -Two-phase core-based approach.
 - Use coordinated sleep schedule to reduce energy consumption.
- CORD contribution
 - Combine sleep schedule with two-phase approach
 - In experiment ,the energy consumption of CORD is 30-60% of that of Deluge.

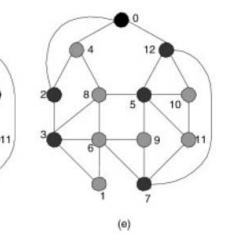

RELATED WORK

- Data Dissemination in Sensor Networks
 - The protocols were developed for supporting network reprogramming in multi-hop networks
 - SPIN (Sensor Protocols for Information via Negotiation) for three-phase handshaking
 - Deluge and MNP compare MOAP
 - Deluge compare MNP
- Connected Dominating Set (CDS)
 - Subset of nodes in a network are selected as a backbone for routing, or as cluster-heads for data aggregation and forwarding.

CORD adapts **Cheng's single leader algorithm**


RELATED WORK




SPIN-BC: A three-stage handshake protocol for broadcast media

- Core Construction
 - Cheng's algorithm
 - Link Quality
 - Two nodes are considered connected only when the link quality between them is above a threshold, *Qth.*
 - Link Quality Indicator (LQI) as a metric of the link quality
 - Establishing Coordinated Schedules
 - modified Cheng's algorithm to integrate core construction with the establishment of coordinated node schedules.

(a)

(b)

Cheng's algorithm

- Establishing Coordinated Schedules
 - The sink initiates core construction by starting the schedule and sending a **CLAIM** message.
 - Nodes that receive the CLAIM message update their effective degrees.
 - If a node has a good link ,it selects sink as its parent and initiates its own repeating schedule. Then broadcast COMPETE message.
 - Node responds with a SUBSCRIBE message to the competitor.
 - A node that receives SUBSCRIBE messages become a core node, otherwise it becomes a non-core node.

- Coordinated Node Sleep Scheduling
 - In protocols ,we use a pipelined data dissemination approach.
 - nodes that transmit data simultaneously should be at least three hops apart to ensure that transfers of different pages do not interfere with each other.

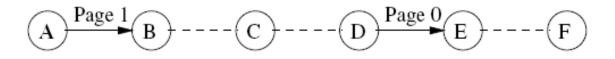
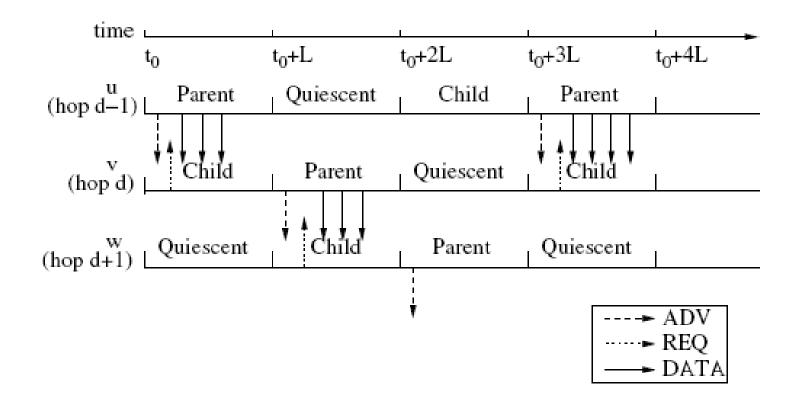



Fig. 1. Pipelined data dissemination

- Coordinated Node Sleep Scheduling
 - We refer to these consecutive slots in a node's schedule
 - P-slot : parent slot
 - C-slot : child slot
 - Q-Slot : quiescent slot
 - Different schedule in different nodes.
 - Core node: C–P–Q schedule
 - Non-core node: C-Q-Q schedule

- Coordinated Node Sleep Scheduling
 - Each node synchronizes the boundaries of its time slots with its parent in the core at the time of core construction.
 - A node's C-slot coincides with the P-slot of its parent in the core.
 - The sink marks its first slot as a P-slot. Nodes that receive advertisements or data from their parents assign the current slot to be a C-slot.

- Two-phase Data Dissemination
 - In the first phase:
 - pages of the object are propagated through the core in a pipelined fashion.
 - The non-core nodes passively participate by listening to communications between core nodes.
 - In the second phase:
 - non-core nodes make requests to their local core nodes for missing data packets

- CORD using the nesC programming language on the TinyOS platform.
- Evaluation Metrics & Methodology
 - Use table I to compare the energy consumption.

CPU current in active state	1.8mA
CPU current in sleep state	5.1uA
Radio current in receive state	23mA
Radio current in transmit state	21mA
Radio current in sleep state	1uA
External EEPROM current in write state	20mA
External EEPROM current in read state	4mA
External EEPROM current in sleep state	2uA

TABLE I TELOSB CURRENT SPECIFICATION

Testbed Description and Results

- Indoor
- Outdoor

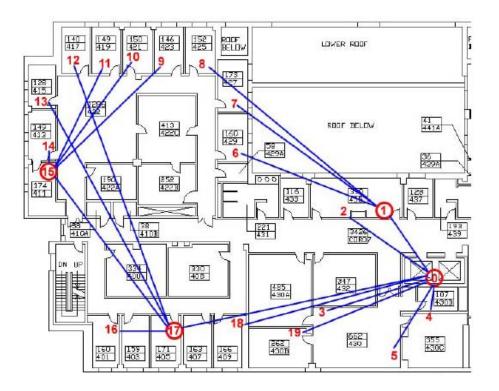
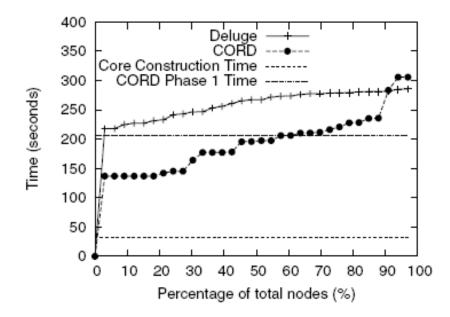


Fig. 3. Indoor TelosB network testbed including the core structure from one experiment (nodes in circles are core nodes)

Testbed Description and Results

	Latency	Node	Number Packet	Node
	(sec)	Uptime (sec)	Transmissions	Energy(mAh)
CORD	243 ± 14.7	76.3 ± 5.55	261 ± 32.6	0.52
Deluge	226 ± 17.3	226 ± 17.3	331 ± 21.5	1.56

TABLE II


AVERAGE OBJECT DELIVERY LATENCY AND ENERGY EXPENDITURE PER NODE FOR INDOOR EXPERIMENTS (CONFIDENCE INTERVALS ARE SHOWN WITH 90% CONFIDENCE LEVEL)

Testbed Description and Results

	Latency	Node	Number Packet	Node
	(sec)	Uptime (sec)	Transmissions	Energy(mAh)
CORD	301 ± 10.0	95.9 ± 5.56	398 ± 78.7	0.66
Deluge	313 ± 10.1	313 ± 10.1	483 ± 5.91	2.15

TABLE III

AVERAGE OBJECT DELIVERY LATENCY AND ENERGY EXPENDITURE PER NODE FOR OUTDOOR EXPERIMENTS (CONFIDENCE INTERVALS ARE SHOWN WITH 90% CONFIDENCE LEVEL)

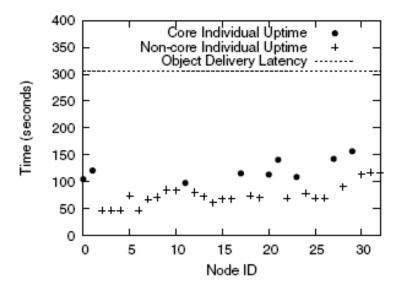


Fig. 8. Individual node uptime for CORD in one experiment on outdoor 3x11 TelosB network

Simulation Results

grid network is denoted by m*n-s

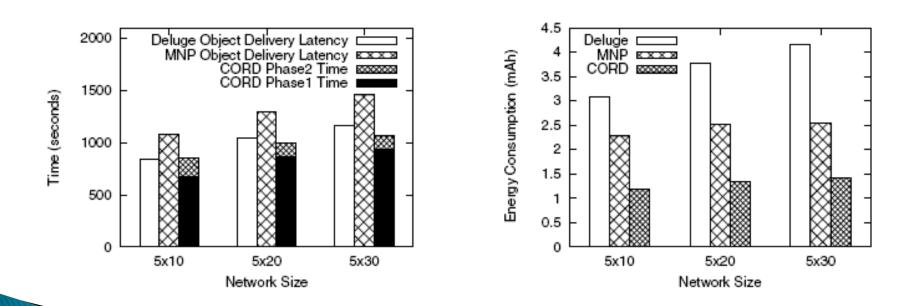

Network topology	5x20 Grid
Spacing	9 meters
Transmission power level	medium (0dBm)
Object size	10 pages
Page size (K)	128 packets
Packet payload size	23 bytes
Slot length (L)	6 seconds

TABLE IV

DEFAULT PARAMETER SETTINGS FOR THE SIMULATION EXPERIMENTS

Simulation Results

• Effect of Network Size:

Simulation Results Effect of Data Object Size

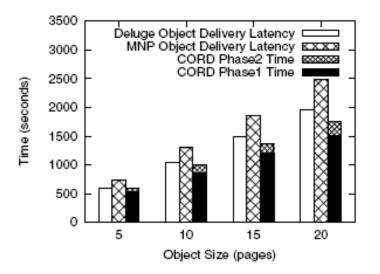


Fig. 15. Latency for various object sizes (5x20-9 network)

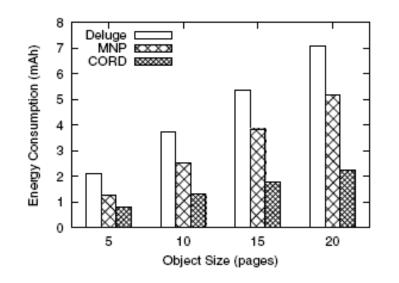
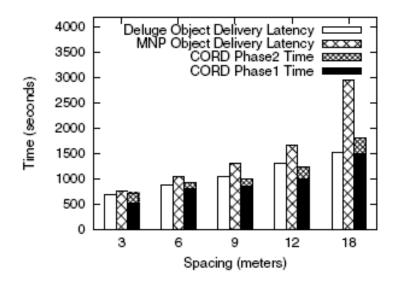
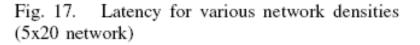




Fig. 16. Energy consumption for various object sizes (5x20-9 network)

Simulation Results

• Effect of Network Density

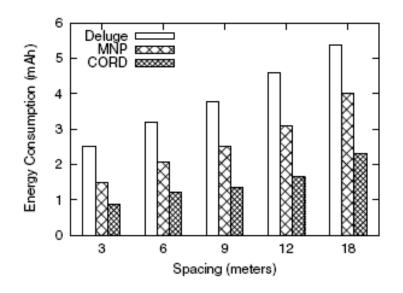


Fig. 18. Energy consumption for various network densities (5x20 network)

CONCLUSIONS

- CORD differs from previously proposed protocols in its aggressive use of sleep scheduling in conjunction with a two-phase core-based pipelined object propagation approach.
- The energy consumption for large object dissemination in CORD is 30%-60% of that of Deluge.