Sensor-based Clustering for Indoor Applications

SECON 2008 林熙閔 09/18, 2008

Outline

- Introduction
- Related work
- Analysis
- Distributed approach
- Evaluation
- Conclusions

Introduction

- The lifetime requirements of wireless sensor network deployments continue to exceed the capacity of today's battery technology by orders of magnitude.
- Node clustering
 - Temporary cluster-node deactivation
 - Cluster-head rotation
 - LEACH (Low Energy Adaptive Clustering Hierarchy)

Introduction

- Forming clusters in such a way that they reflect real world semantics that are meaningful to the application.
- This paper shows that it is feasible to automatically create clusters (groups of nodes) that adhere to room boundaries using inexpensive and broadly available sensors.

Related work

- In most cases, clusters are formed on the basis of <u>connectivity information</u> or on the basis of <u>geographical positions</u> of sensor nodes.
- Rely on acceleration sensors. Their results show that a successful grouping can be established with high accuracy if the sensors are worn on the same part of the body. [6]

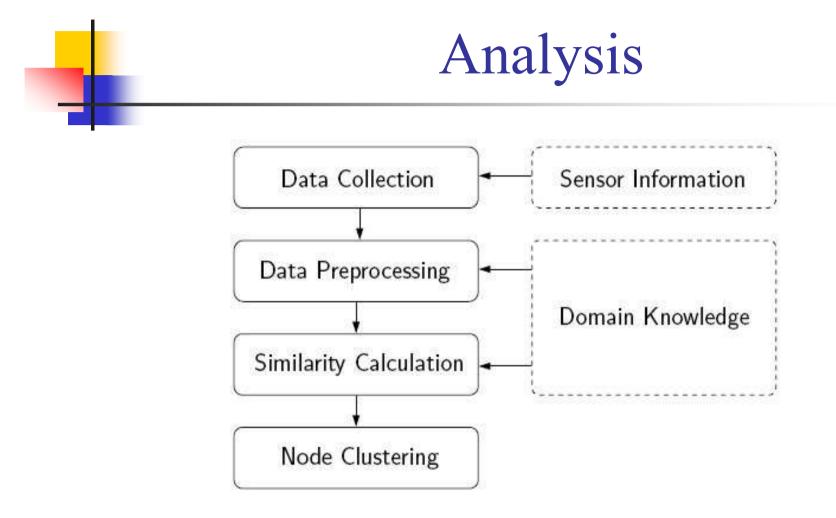
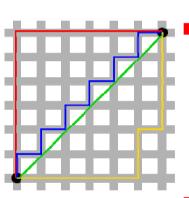
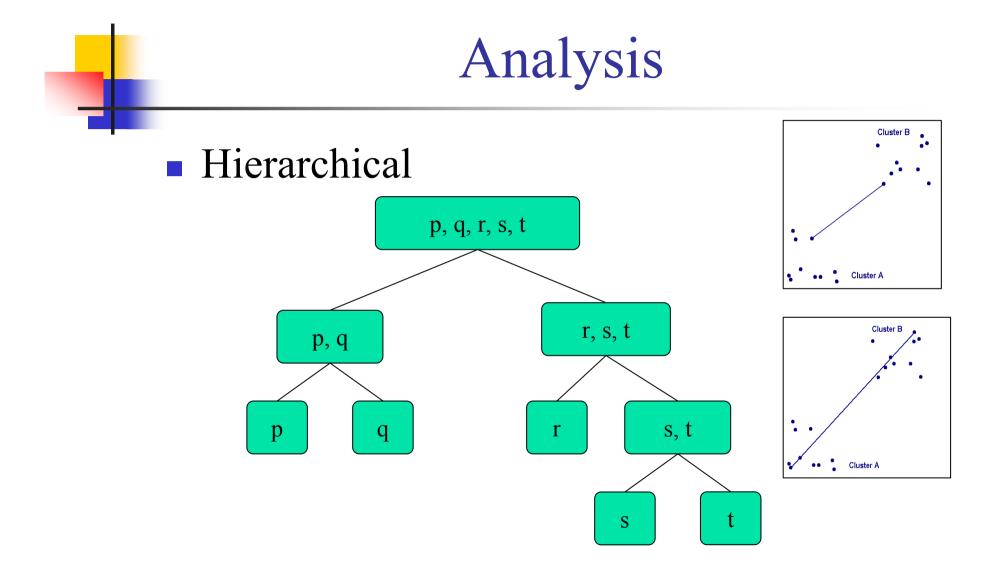


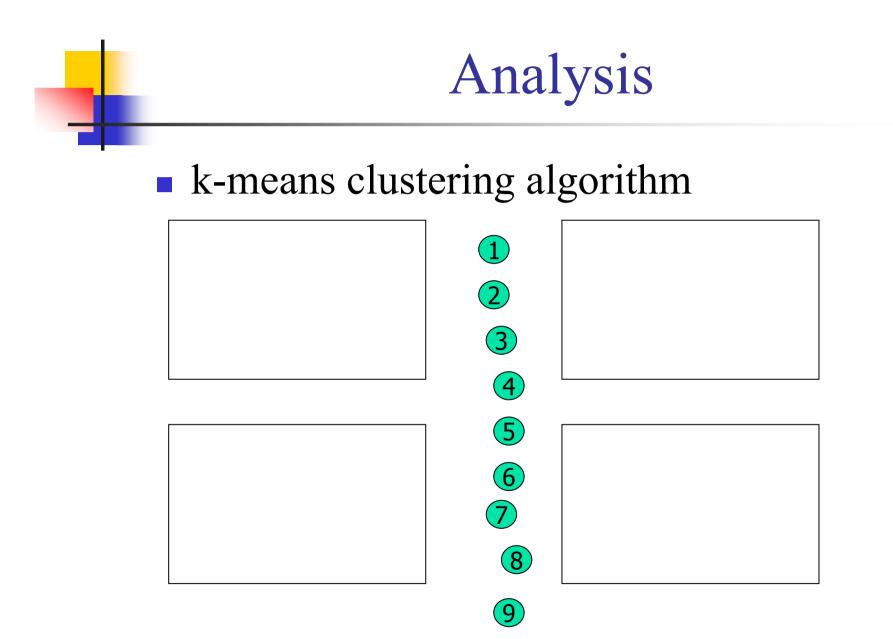
Fig. 1: Processing steps


• Off-line analysis using a PC.

- Not suitable for real world wireless sensor networks.
- However, it eliminates a number of complications and ensures that multiple methods can be run on the same set of input data.

Data Preprocessing (or data filtering modifies)


- Normalization filter
 - bringing the sensor data from all data sources to **one common scale**.
- Data smoothing filter
 - calculating the **average of the previous x values** and uses this average as the output.
- Curve tendency filter
 - solely records whether the current sensor value is higher or lower than the previous value, thereby producing binary output
 - required a large number of samples or tended not to stabilize which disqualifies it for use in real applications
- Event detection filter
 - record significant changes
 - a light that is switched on or off
 - proved to be useful in a large set of cases across all experiments


Similarity Calculation

- Distance metrics express how far apart two variables are according to a certain criterion
 - Euclidean distance
 - Manhattan distance
- Correlation coefficient measures the strength of a relationship between two variables
 - Pearson coefficient
 - most reliable similarity metric
 - Phi coefficient
 - works well in combination with the event filter

- Node Clustering
 - Hierarchical
 - arrange the individual elements of a set in a tree
 - can either be done agglomerative or divisive
 - Partitional
 - requires knowledge about the number of clusters to be found in the system
 - used the k-means clustering algorithm
 - most popular

- Experimental Analysis
 - Tmote Sky sensor nodes
 - Temperature · Humidity · Light sensors : photosynthetically active radiation (PAR), total solar radiation (TSR).
 - Four different rooms with three nodes being placed in each room.
 - Nodes were in different parts of the monitored rooms at different heights and with different orientations.
 - Sensor chips were not directly covered by other artifacts of the room.
 - Deliberately not avoided
 - lying in the shadow of an artifact
 - lying in the airflow of a window

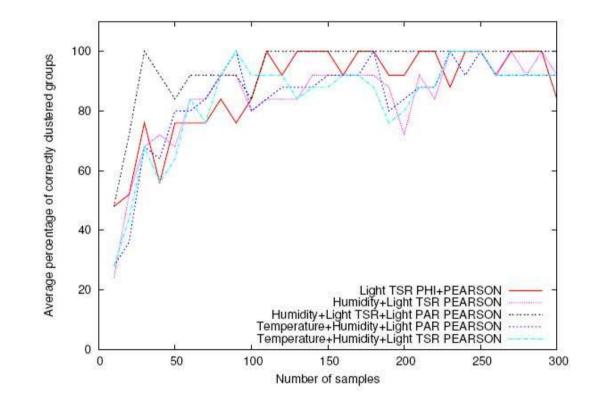
	Home scenario 1		Home scenario 2	
	Inside	Between rooms	Inside	Between rooms
Humidity	0.87	0.22	0.86	-0.02
Light PAR	0.96	0.50	0.93	0.20
Light TSR	0.98	0.39	0.95	0.34
Temperature	0.83	0.35	0.77	0.18

(a) inside rooms / between rooms

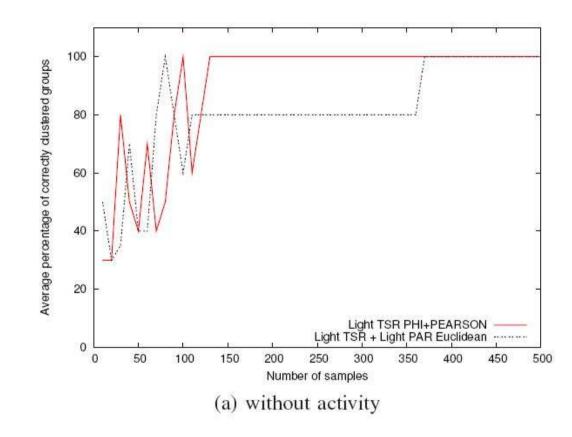
	T(n)	S(n)	Usefulness
Normalization	O(n)	O(n)	Limited
Data smoothing	O(n)	O(1)	Limited
Curve tendency	O(n)	O(1)	Limited
Event detection	O(n)	O(1)	High
Euclidean	O(n)	O(1)	High
Manhattan	O(n)	O(1)	High
Pearson	O(n)	O(1)	High
Phi	O(n)	O(1)	High
Hier. single link.	$O(m^2 \log m)$	$O(m^2)$	High
Hier. compl. link.	$O(m^2 \log m)$	$O(m^2)$	High
Hier. avg. link.	$O(m^2 \log m)$	$O(m^2)$	High
k-means	O(klmn)	O(kn)	High

(b) Result overview

- Combining Clustering Trees
 - Improve the resulting clustering quality
 - Balance weaknesses and strengths of different criteria.
 - Combining distance or correlation information from different sources cannot be done by simply calculating the average distance or correlation matrices
- Average consensus supertree (ACS) [14]

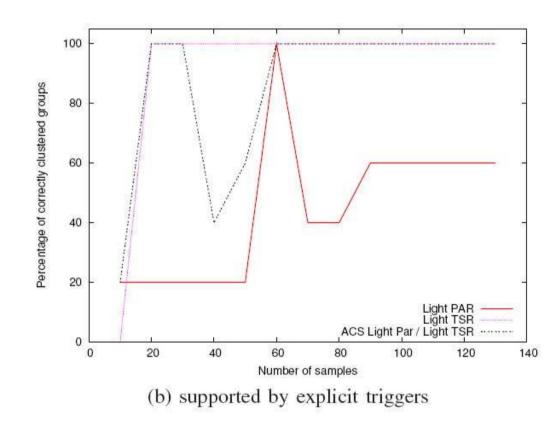

Distributed approach

 Forwarding the collected sensor data from all nodes in the network with a sufficiently high sampling rate creates a high traffic load.


Distributed approach

- Data preprocessing and similarity calculation are directly done on the individual sensor nodes.
 - each sensor node periodically reads its own sensor data and broadcasts the collected data in a beacon message to its neighbors every p seconds.
 - when receives a beacon message: Reads its own sensor data and compares the two data samples to extract information required for the similarity calculation.
- The actual computation of the node clustering.
 - the last step of the clustering process
 - cannot be distributed as it requires a **global view** on similarity information among all nodes.
- Collecting the similarity information at a central point is much less expensive than collecting complete vectors of sensor data.

Evaluation



Evaluation

20

Evaluation

Conclusions

- It is feasible to automatically create clusters that reflect rooms by analyzing the measurements of inexpensive and broadly available sensors.
- The idea of clustering devices based on sensor data does not have to be limited to sensor nodes
 - self-configuring home entertainment systems
 - home automation systems
 - alarm systems