QoS-Aware Cooperative and Opportunistic Scheduling Exploiting Multiuser Diversity for Rate-Adaptive Ad Hoc Networks

Transactions on Vehicular Technology, 2008

Authors: Qing Chen, Qian Zhang, Zhisheng Niu

Presented by Hsi-Min Lin 12/19, 2008

# OUTLINE

INTRODUCTION
 PROBLEM FORMULATION
 OPTIMAL CRITERIA OF SCHEDULING
 HEURISTIC SCHEDULING
 SIMULATION RESULT
 CONCLUSIONs

# INTRODUCTION (1/3)

- **n** To achieve high utilization of the scarce wireless resource.
  - n opportunistic transmission
    - n improve the overall network throughput
- n Two main classes of opportunistic transmission in MANET.
  - n Exploit time diversity
    - n opportunistic auto-rate (OAR)
  - n Exploiting multiuser diversity
    - n opportunistic packet-scheduling and auto-rate (OSAR)
    - n medium-access-diversity (MAD)

## INTRODUCTION (2/3)

#### n Two examples with two transmitters



# INTRODUCTION (3/3)

- n Three unique issues for exploiting multiuser diversity in MANETs
  - n cochannel interference
  - n QoS requirements of each flow
  - **n** estimating the channel conditions

# PROBLEM FORMULATION

n The opportunistic scheduling:

$$\begin{split} \max_{Q} & \sum_{i \in \mathcal{N}} E\left\{f_{i}\left(\mu_{i}(t)\right)I_{i \in Q(t)}\right\}\\ \text{s.t.} & E\left\{g_{i}\left(\mu_{i}(t)\right)I_{i \in Q(t)}\right\} \geq G_{i} \quad \forall i \in \mathcal{N}\\ & c(i, j, t) = 0 \quad \forall i, \quad j \in Q(t), \quad i \neq j \end{split}$$

- n  $\mu_i(t)$ : ith flow's feasible data rate, in timeslot t
- n  $f_i(\mu_i(t))$ : utility function
- n Q(t): scheduled transmitting flow set in timeslot t
- **n** c(i,j,t) = 1, if flow i and j are edged in CG(t)
- n  $g_i(\mu_i(t))$ : generalized function, use to describe different constraints
- n  $G_i$ : ith flow's long-term QoS requirement

# OPTIMAL CRITERIA OF SCHEDULING (1/2)

- n The flow set selected by optimal scheduling should be a MIS (Maximal Independent Subset)
- n The optimal solution of the opportunistic scheduling:

$$Q^*(t) = S_{m^*}(t), \text{ where}$$
$$m^* = \arg \max_{m} \left\{ \sum_{i \in S_m(t)} \left[ f_i(\mu_i) + \lambda_i g_i(\mu_i) \right] \right\}$$

n  $\lambda_i$ 's : the Karush–Kuhn–Tucker (KKT) multipliers (ith flow's QoS factor) OPTIMAL CRITERIA OF SCHEDULING (2/2)

n Focus on the minimum bandwidth constraints and the network throughput maximization

**n**  $g_i(\mu_i) = f_i(\mu_i) = \mu_i$ 

n Optimal criteria

$$Q^{*}(t) = S_{m^{*}}(t), m^{*} = \arg\max_{m} \left\{ \sum_{i \in S_{m}} \mu_{i}(1+\lambda_{i}) \right\}$$

# HEURISTIC SCHEDULING (1/12)

- Cooperative and opportunistic scheduling (COS)
  - n IEEE 802.11-based
  - n distributed
  - n cooperative
  - **n** obtains higher network throughput
  - **n** better QoS support than the existing schemes
  - n with limited local information.

## HEURISTIC SCHEDULING (2/12)



# HEURISTIC SCHEDULING (3/12)

#### n Channel Probing and Information Exchanging

- **Two-hop** transmission-range information exchanging
  - n Local contention graph (LCG)
    - n average LCG
      - n Contended: <u>if and only if</u> one node of a flow is in the <u>two-</u> hop average transmission range of any node of another flow.
- n Credit table
  - n includes flow's
    - n identifier
    - h the feasible data rate
    - n the QoS factor
  - n Updates
    - n channel probing mechanism
    - n overhearing other flows' control packets.

### HEURISTIC SCHEDULING (4/12)

#### n Credit Calculation

- n CR(X) : credit function which returns the credit of entity X
- n Two-Transmitter Scenario



 $\{S_m\} = \{S_1, S_2, S_3, S_4\} = \{\{F_2\}, \{F_3\}, \{F_1, F_4\}, \{F_1, F_5\}\}$ 

### HEURISTIC SCHEDULING (5/12)

- n Credit Calculation
  - n A MIS's credit



## HEURISTIC SCHEDULING (6/12)

- n Credit Calculation
  - n A flow's credit

 $\texttt{n} \ \mathsf{CR}(l_i) = \max_m \left\{ \mathsf{CR}(S_m) \, | \, i \, \subseteq \, S_m \right\}$ 



## HEURISTIC SCHEDULING (7/12)

#### n Credit Calculation

n A transmitter's credit

 $R(T_A) = \max_i \{ CR(l_i) \mid i \text{ is originated by transmitter } A \}.$ 



## HEURISTIC SCHEDULING (8/12)



# HEURISTIC SCHEDULING (9/12)

### n Flow Scheduling

- n Phase I
  - n select outgoing flow which has the highest credit among its candidate flows
  - n sends back-to-back packets on this flow with the packet concatenation (PAC) mechanism

#### n Phase II

- priority-based scheduling policy
  - n Traffic-control interframe space (TIFS)
    - n length is set according to the transmitter's credit.

## HEURISTIC SCHEDULING (10/12)

### n Flow Scheduling



- n seq : one transmitter's credit order among all the transmitters in its LCG.
- **n** seq = 1 : the largest credit.

### HEURISTIC SCHEDULING (11/12)

#### n Example



n { $S_m$ } = { $S_1$ ,  $S_2$ ,  $S_3$ ,  $S_4$ } = {{ $F_2$ }, { $F_3$ }, { $F_1$ ,  $F_4$ }, { $F_1$ ,  $F_5$ }}

n Case 1

n 
$$U_i = \mu_i (1 + \lambda_i) \rightarrow \{2, 4, 5, 4, 5\}$$
  
n  $CR(S_m) \rightarrow \{4, 5, 6, 7\}$   
n  $CR(l_i) \rightarrow \{7, 4, 5, 6, 7\}$   
n  $CR(T_A) = 7$ ;  $CR(T_B) = 7$   
n A's TIFS = 0

19

### HEURISTIC SCHEDULING (12/12)

#### n Example



n  $\{S_m\} = \{S_1, S_2, S_3, S_4\} = \{\{F_2\}, \{F_3\}, \{F_1, F_4\}, \{F_1, F_5\}\}$ 

n Case 2

n 
$$U_i = \mu_i (1 + \lambda_i) \rightarrow \{2, 4, 10, 4, 5\}$$

n 
$$CR(S_m) \rightarrow \{4, 10, 6, 7\}$$

n 
$$CR(l_i) \rightarrow \{7, 4, 10, 6, 7\}$$

n 
$$CR(T_A) = 7$$
;  $CR(T_B) = 10$ 

n A's TIFS != 0

# SIMULATION RESULT (1/7)

#### n Two-Transmitter Scenario

- n 450 m : distance between a <u>sender</u> and a <u>receiver</u>
- n 1800 m : the distance between the two transmitters
  - <sup>n</sup> larger than the average carrier sensing range.

By two-ray ground reflection model:

| Rates    | 11.0 | 5.5 | 2.0 | 1.0 | Carrier |
|----------|------|-----|-----|-----|---------|
| (Mbps)   |      |     |     |     | sensing |
| Rang (m) | 399  | 531 | 669 | 796 | 1783    |

## SIMULATION RESULT (2/7)

#### n Two-Transmitter Scenario



## SIMULATION RESULT (3/7)

# n Random Flows in Grid Topology

n 14-flow example





# SIMULATION RESULT (5/7)

### n Random Flows in Grid Topology

- n random scenarios
  - n 10–16 flows are randomly generated
  - n each transmitter has two-to-four single-hop flows



# SIMULATION RESULT (6/7)

### n Random Topologies

- four transmitters are uniformly distributed in
   a 3 × 3-km square area
- n Each transmitter has three candidate receivers which are uniformly distributed in a round area with a radius of D<sub>max</sub>

### SIMULATION RESULT (7/7)

### n Random Topologies



# CONCLUSIONs

#### n The key contributions of this paper

- An interference-dependent multiuser diversity model is given for the ad hoc networks while considering the QoS requirement of each flow.
- An optimal criterion is presented to find the globally optimal set of simultaneously transmitting flows.
- n An IEEE 802.11-based QoS-aware distributed cooperative and opportunistic scheduling (COS) is designed, which obtains higher network throughput and better QoS support than the existing schemes with limited local information.