An Efficient Filter-based Addressing Protocol for Autoconfiguration of Mobile Ad Hoc Networks

IEEE INFOCOM 2009

Fernandes, N. C. Moreira, M. D. D. Duarte, O. C. M. B.

Presented by Hsi-Min Lin 7/2, 2009

OUTLINE

- n INTRODUCTION
- n RELATED WORK
- n FILTER-BASED ADDRESSING PROTOCOL (FAP)
 - n Sequence Filters
 - n Bloom Filters
 - n Procedures of FAP
- n ANALYSIS
- n SIMULATION
- n CONCLUSIONs

INTRODUCTION

- n Address allocation problem in ad hoc network
 - n Auto-configures address
 - n Distributed
 - n Address collision problem
 - n Address allocation delay problem
 - n Partitions problem
 - n Control overhead constraint
 - n Life time of nodes
 - n Available bandwidth to send data
 - n Storage constraint

RELATED WORK

- n Duplicate Address Detection (DAD)
 - n <u>Randomly</u> chooses an address
 - n Address Request message (AREQ)
 - n For allocated address
 - n Address Reply message (AREP)

Handle address collision

n Does not handle network partitions

RELATED WORK

- n Duplicate Address Detection (DAD)
 - n <u>Randomly</u> chooses an address
 - n Address Request message (AREQ)
 - n For allocated address
 - n Address Reply message (AREP)

Handle address collision

n Does not handle network partitions

RELATED WORK

- n Fan and Subramani propose a protocol based on DAD
 - **n** Called \underline{FS} in this paper
 - n Use Hello messages
 - n Use <u>random numbers</u> as <u>network identifiers</u> to detect network merging
- n Fazio et al. also propose a protocol
 - n Based on network identifiers
 - n Works in a <u>reactive fashion</u>
- n MANETconf
 - n <u>Allocated IP list</u> and <u>allocated-pending list</u>
 - n Partition detection depends on periodic flooding
 - n Large number of <u>control messages</u> and required to have a high <u>storage</u> <u>capacity</u>.
- n Dynamic Address assignment Protocol (DAP)
 - n High <u>control load</u> required to have a high <u>storage capacity</u>.

FILTER-BASED ADDRESSING PROTOCOL (FAP)

n Aims

 Dynamically autoconfigure addresses, identifying and solving <u>addresses collisions</u> with a <u>low control load</u>

n Filters

- **n** Represent the <u>current set of allocated addresses</u>.
- n Hash of the filter (<u>filter signature</u>) as a <u>partition</u> <u>identifier</u>.

17

Procedures of FAP

Procedures of FAP

(a) Hello.

0	8	16	24	32
Туре		Reser	ved	
	597	Source		
1	Node fo	rwarding th	e packet	
	Seq	uence Num	ber	l.
1:1		Signature		1:4

(b) Address Request (AREQ).

0		8		16	24	3
	Туре	I	Counter	R	Reserved	
		-93338	Sou	rce		
			Des	tinatio	on	
1.1			Addres	ss Filt	er	1:1
1.1			Sign	atures		1:1

(c) Address Filter (AF).

0		8	16	24	4 i
	Туре	M	Counter	Seq. Num.	Reserved
	20004	202	Sou	irce	
1.1	Ad	dres	s filter of	the other p	artition
	(254)	- 80		1952 1 1 23	

(d) Partition.

Procedures of FAP

Join Network

Procedures of FAP Nodes Departure

n Address should become available

- n The nodes could floods the network with a notification to <u>release</u> it's address (<u>removal</u> of its address of the <u>address filter</u> of each network node)
- n Otherwise, the <u>address remains allocated</u> on the filters

ANALYSIS

- n The available addresses scarce after many departures
- n Message loss
- n Two different nodes generate Address Requests (<u>AREQ</u>s) with the <u>same address</u> and the <u>same sequence number</u>
- n Two isolated partitions have exactly the same filters and try to merge

SIMULATION

Number of address collisions with 50 nodes on a partition merging.

Control load with 50 nodes on partition mergings and two transmissions of flooding messages.

CONCLUSIONs

n Filter-based Addressing protocol (FAP)

- n Handles nodes joining/leaving the network and partition mergings in a distributive way
- n Uses address filters to allocate addresses
 - Reduce the control load
 - n Reduce the delay
 - n Accurate partition merging detection
 - n Increase the protocol **robustness**
 - n Robust to messages losses