Cooperative Recovery in Heterogeneous

Mobile Networks

OUTLINE

- Introduction.
- System architecture.
- Protocol design.
- Performance evaluation.
- Further works & Conclusion.

INTRODUCTION

- Compare Multicast with Unicast over wireless networks.
 - Benefits :
 - Distribute data efficiently.
 - Improve throughput.
 - Defects :
 - Difficult to guarantee the reception reliability of multiple recipients.
 - No reverse communication channel.

INTRODUCTION

• FEC (forward error correction).

Increase transmission bandwidth requirements or message delay.

• Multiple antennas.

- High cost.

• The Cooperative Recovery Protocol.

- Peer cooperation.

SYSTEM ARCHITECTURE

5

SYSTEM ARCHITECTURE

- Two radio interfaces in device :
 - Connect to principal network, for receiving multicast data from BS to wireless devices.
 - Connect to assistant network, over which the messages and packets for recovery can be transmitted.

SYSTEM ARCHITECTURE

Recovery rate

Source S is multicasting data to devices A and B. P1,P2<<1 , so the recovery rate : $(1 - \Pi Pn) \approx 1$

Related work

◆ Use relay nodes in assistant network : Big load.

PROTOCOL DESIGN

- Peer Discovery and Partnership Establishment.
- Partnership Maintenance.
 - Periodically check by exchanging Keep-Alive(KA) messages between them.
- Data Recovery.

Peer Discovery and Partnership Establishment

REQUESTER					HELPER		
		PREQ			TTL		
		PREQ ID		SESSION ID]	
broadcast							
		PREP					
		PREQ ID	ORG	PREP ID	SESSION ID		
Admit?	←		1				
		PACK					
		PACK ID ORIGIN	IAL ID SES	SION ID ACK	CONF]	
		РСОМ				-	
		PCOM ID	ORG	PACK ID	SESSION ID		
	•						

Partnership Maintenance

- Requester's view :
 - A Keep-Alive (KA) unicast message is sent periodically with period K_INTERVAL.
 - The peer replies with a unicast Keep_Alive_Reply (KAR) message.
 - KAR_TIMEOUT after sent KA.
 - KEEP_ALIVE_RETRIES_LIMIT.

Partnership Maintenance

• Partner's view :

 Has not received the KA message from the requester device for a time interval KEEP_ALIVE_LIMIT.

• IF one partnership is ended , find a replacement partner.

Data Recovery

- Methodology :
 - 3G multicast principal network.
 - 802.11b WLAN assistant network.
 - OPNET Modeler with PDUs simulating the reception of 3G multicasts session.
- Compare the before recovery and after recovery PDU drop rates at the wireless devices.

- 1) Dependency on PDU drop rate.
- 2) Dependency on the number of helpers.
- 3) Effect of Recovery Network Size.
- 4) Throughput Improvement and Fairness.
- 5) Multi-hop Scenario.
- 6) Recovery Delay.
- 7) Video Encoder/Decoder Simulation.

Dependency on PDU drop rate :

Effect of helper

15

Effect of requester

🔶 30% AVG PDR 🗕 20% AVG PDR 100 Rate (%) 98 Rec eption 96 94 acket 92 ۵ 90 2 5 3 **Recovery Cluster Size**

Effect of number of partners

Effect of recovery network size

16

Throughput improvement in a dense environment

17

Multi-hop Recovery Scenario

Peak Recovery Delay

Video Encoder/Decoder Simulation

TABLE I: PSNR Values

PSNR(dB)	Y	U	V
Before Recovery	21.31	24.23	25.27
After Recovery	35.62	38.49	39.54

$$MSE = \frac{\sum_{n=1}^{FrameSize} (I_n - P_n)^2}{FrameSize}$$

FURTHER WORKS AND CONCLUSION

- Mobility of Wireless Devices
 - Discover a new partner or find a relay node relay the packets to the requester.
- Partner Selection
 - According to various criteria to optimize this partner selection process.

FURTHER WORKS AND CONCLUSION

22 Hierarchical ad hoc recovery network with dedicated proxies

FURTHER WORKS AND CONCLUSION

 Cooperative Recovery Scheme, which is a novel method to enhance QoS support for multicast services over a principal network (3G).

THANKS!