

## Analysis and Design of Effective and Low-Overhead Transmission Power Control for VANETs



Jens Mittag, Felix Schmidt-Eisenlohr, Moritz Killat, Jerome Harri, Hannes Hartenstein

> VANET 2008 PRESENTER:劉哲維 2008/12/25

# OUTLINE

- INTRODUCTION
- BACKGROUND
- SENSITIVITY ANALYSIS
- LOWOVERHEAD TRANSMISSION POWER CONTROL
- COMPARISON OF DVDE/SPAV AND D-FPAV
- CONCLUSIONS

## INTRODUCTION

- In VANETs, we use the control of vehicles' radio communication behavior to deal with the constrained available wireless bandwidth.
- For traffic safety, each vehicle will send out
   One-hop beacons for mutual awareness.
   Event-driven emergence messages (multi-hop) when hazardous situation is detected.

# TDMA-based approach would reserve specific slots for emergency messages.



| Density<br>(vehicles/km/lane) | Transmission Power |           |           |           |  |  |
|-------------------------------|--------------------|-----------|-----------|-----------|--|--|
|                               | 20 dBm             | 15 dBm    | 10 dBm    | 5 dBm     |  |  |
| 25                            | 10.18 Mbps         | 7.64 Mbps | 5.73 Mbps | 3.46 Mbps |  |  |
| 22                            | 8.95 Mbps          | 6.72 Mbps | 5.04 Mbps | 3.04 Mbps |  |  |
| 16                            | 6.51 Mbps          | 4.89 Mbps | 3.67 Mbps | 2.21 Mbps |  |  |
| 11                            | 4.48 Mbps          | 3.36 Mbps | 2.52 Mbps | 1.52 Mbps |  |  |
| 7                             | 2.85 Mbps          | 2.14 Mbps | 1.60 Mbps | 0.97 Mbps |  |  |

default power

We need to adjust the transmission power dynamically in order to adapt to different traffic situations and efficiently exhaust the available bandwidth.

- Based on above concepts, a power adjustment approach should
  - □ Keep the beacon load at a preconfigured level.
  - □ Reserve some bandwidth for emergency messages.
  - Maximize the beacon transmission power without violating the MBL.
  - Requires a negligible amount of additional communication overhead.
  - Share the bandwidth used by beacons between nodes in a fair manner.

## BACKGROUND

# For emergency messages Limit the number of potential relay[6~12].

For periodic beacon messages
 Packet size : unsustainable in VANET.
 Transmission rate : 802.11p(WAVE).
 Transmission power : FPAV[2] \ D-FPAV[24]

### (CSR(v, pv))

□ The carrier sense range of node v using power pv.

### (CSA(v, pv))

□ The carrier sense area using (CSR(v, pv)) as radius.



#### Beacon load

sum of all periodic status messages sensed by a reference vehicle during a time interval t



### Maximum beacon load (MBL)

□ Reserve some bandwidth for emergency messages.

#### Extended messages

□ To obtain much more information.

- □ Contain the list of the positions of all vehicles located inside CSAmax(v) as estimated by vehicle v.
- Additional overhead because of bigger size and multi-hop.
- A trade-off between additional overhead and estimation accuracy.

#### D-FPAV

Distributed Fair Transmit Power Adjustment for Vehicular Ad Hoc Networks.

The transmission power start at lowest possible power level and is 'virtually' increased step-by-step while estimating the resulting beaconing load at each vehicle after each step. Algorithm D-FPAV: (algorithm for node  $u_i$ )

INPUT: status of all the nodes in  $CS_{MAX}(i)$ 

- OUTPUT: a power setting PA(i) for node  $u_i$ , such that the resulting power assignment is an optimal solution to BMMTxP
  - 1. Based on the status of the nodes in  $CS_{MAX}(i)$ , compute the maximum common tx power level  $P_i$  s.t. the MBL threshold is not violated at any node in  $CS_{MAX}(i)$
  - 2a. Broadcast  $P_i$  to all nodes in  $CS_{MAX}(i)$
  - 2b. Receive the messages with the power level from nodes  $u_j$  such that  $u_i \in CS_{MAX}(j)$ ; store the received values in  $P_j$
  - 3. Compute the final power level:  $PA(i) = \min \left\{ P_i, \min_{j:u_i \in CS_{MAX}(j)} \{ P_j \} \right\}$

|         | $u_1$ | $u_2$ | $u_3$ | $u_4$ | $u_5$ | $u_6$ | $u_7$ | $u_8$ |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|
| $u_1$   | 150   | 150   | 150   | 150   | 150   |       |       |       |
| $u_2$   | 50    | 50    | 50    | 50    | 50    | 50    |       |       |
| $u_3$   | 50    | 50    | 50    | 50    | 50    | 50    | 50    |       |
| $u_4$   | 50    | 50    | 50    | 50    | 50    | 50    | 50    |       |
| $u_5$   | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50    |
| $u_6$   |       | 50    | 50    | 50    | 50    | 50    | 50    | 50    |
| $u_7$   |       |       | 50    | 50    | 50    | 50    | 50    | 50    |
| $u_8$   |       |       |       |       | 150   | 150   | 150   | 150   |
| TABLE I |       |       |       |       |       |       |       |       |

SUMMARIZATION OF D-FPAV EXECUTION. ENTRIES REPRESENT IN

METERS THE MAXIMUM ALLOWED VALUE OF THE CS RANGE PER NODE.

The D-FPAV algorithm.

## SENSITIVITY ANALYSIS

#### Worst case



 Every vehicle has to periodically broadcast a list of known neighbors to provide this knowledge.
 Extended beacon messages.

#### Simulation setup

□ Full overhead.

Including information of all cars in its CSA(max).

Reduced overhead.

Including information of all cars in its CSA(v,pv).

□ Considered information range (CIR).

1060m or 2120m

 $\Box$  Power discrete level = 32.

Affects the power control protocol.



- Homogeneous area with 80 vehicles inside maximum CSA
- Homogeneous area with 160 vehicles inside maximum CSA
- Transitional area with increasing number of vehicles inside maximum CSA





### LOWOVERHEAD TRANSMISSION POWER CONTROL

Because the reduced overhead is still not negligible, we propose a DVDE/SPAV protocol.

Distributed vehicle density estimation (DVDE)
 Analysis and provide surrounding traffic information.
 Segment-based Power Adjustment for

Vehicular environments (SPAV)



■ VDH(E(v,5))={3,2,4,2,2}.  

$$\uparrow$$
  
 $s_j(0) \times 0.9 + s_j(1) \times 0.1$ 

#### VDH

Based on information received by others (beacon).
Other cars' periodic broadcast (extended message).
Merge.

#### SPAV

- 1. Compute a maximum common power for all cars in its environment.
- 2. Each segment derives a catchment area.
- 3. For a vehicle v, its beacon transmission power is correspond to the minimum catchment area.

### COMPARISON OF DVDE/SPAV AND D-FPAV



Bidirectional highway with 3 lanes per direction. Number of segments : 21.

#### Additional overhead from extended messages

|                      | Low density | High density |
|----------------------|-------------|--------------|
| D-FPAV full overhead | 22.8%       | 41.4%        |
| D-FPAV reduced over- | 16.2%       | 18.6%        |
| head                 |             |              |
| DVDE/SPAV            | 0.42 %      | 0.42 %       |

• Comparison of transmission power.





Use higher transmission powers to increase mutual awareness between vehicles.

Reserve more bandwidth for event-driven messages.

## CONCLUSIONS

We make an analysis of Accuracy vs. Overhead.

We propose a transmission power adjustment protocol with negligible overhead which is independent of number of nodes, and it allows to use higher transmission powers or reserve more bandwidth for event-driven messages.