Analysis of Multi-Hop Emergency Message Propagation in Vehicular Ad Hoc Networks

Conference : MobiHoc '07 Authors : Giovanni Resta, Paolo Santi, Janos Simon Presented by C. W. Liu 2009/04/16

OUTLINE

INTRODUCTION

NETWORK AND CHANNEL MODEL

THEORETICAL ANALYSIS

DISCUSSION AND SIMULATION

CONCLUSIONS

INTRODUCTION(1/2)

- Safety applications are attracting a lot of attention because of improving driver's awareness of surrounding environment.
- We can improve reliability of 1-hop emergency message by devoting more resources to safetyrelated message dissemination, like setting the transmit power level [13, 14].

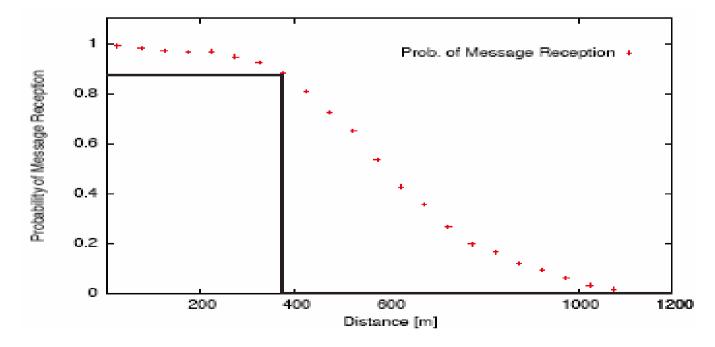
INTRODUCTION(2/2)

Goals of this paper

- □ Analyze multi-hop emergency message protocols.
- \Box Derive lower bounds on P (d, t, p).
- Investigate the tradeoff between safety-level and emergency message resource wastage.
 - The relative advantage of having an increased p tends to decrease as d increases.
 - The efficacy of increased p displays a clear dependence on the traffic conditions.

NETWORK AND CHANNEL MODEL

- All cars are equally spaced along a line $: S_n(t)$.
- Interference between concurrent transmission.
- Channel model :



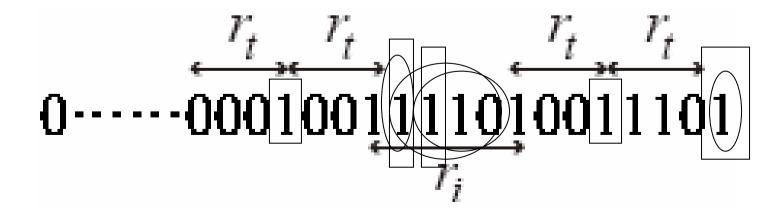
THEORETICAL ANALYSIS(1/8)

- IDEALIZED strategy :
 - □ Reliability:
 - Turns every internal 0-node into a 1-node with probability p at each round.
 - □ Fast:
 - Every node i such that i > k and i k ≤ r_t assigns probability p of turning into a 1.

THEORETICAL ANALYSIS(2/8)

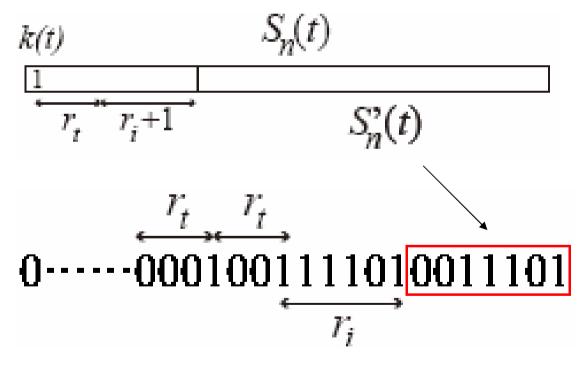
Global strategy :

- \Box 1 stage has h rounds, h = 2 if $r_{_t}$ = $r_{_i}$, and h = 3 if $r_{_t}$ < $r_{_i}$ \leq $2r_{_t}$.
- □ Input : $S_n(t)$, output : set T_h of transmitters for round t + h.



THEORETICAL ANALYSIS(3/8)

IMGlobal strategy :



THEORETICAL ANALYSIS(4/8)

• Approximation bounds : (α , β)

 $\mathbf{\Gamma}(1_{-}(4))$

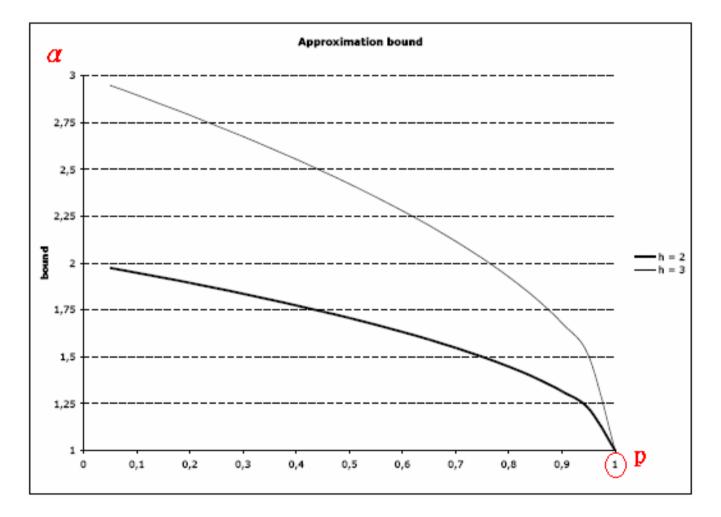
 $\square \alpha$: Gives chance at least p/ α of turning into 1 to all internal 0-nodes at each round.

$$\beta : E_{s}(k(t)) \ge \frac{E(k(t))}{\beta}$$

$$\square GLOBAL : \left(\frac{p}{1-\frac{h}{\sqrt{1-p}}}, h\right) \longleftarrow \qquad \begin{array}{l} (1-q)^{h} \ge (1-p) \\ q \le 1-(1-p)^{\frac{1}{h}} \end{array}$$

$$\square IMGLOBAL : \left(\frac{p}{1-\frac{h}{\sqrt{1-p}}}, 1\right)$$

THEORETICAL ANALYSIS(5/8)



THEORETICAL ANALYSIS(6/8)

Time-constrained reception probability : P(d,t,p) $P(\bar{d}, \bar{t}, p) = \sum_{r_T} \overline{Prob(Succ(p, h))} \cdot Prob(EStart(\bar{d}, \bar{t} - h))$ $1 - (1 - \bar{p})^h$ Lower bound of Prob(Start(d,t)) : \Box Define X(t) = k(t+1) - k(t). $E(p, r_T) = \sum_{h=1}^{r_T} h \cdot p \cdot (1-p)^{r_T - h} = r_T + 1 - \frac{1 - (1-p)^{r_T + 1}}{p}$ $V(p, r_T) = \sum_{r_T}^{r_T} h^2 \cdot p \cdot (1-p)^{r_T - h} - E(p, r_T)^2$

$$= (1-p) \left[1 - (2r_T+1)p(1-p)^{r_T} - (1-p)^{2r_T+1} \right] / p^2$$

$$\begin{split} \mathbf{X} &= \sum_{i=1}^{k} X_{i} \\ Prob(\mathbf{X} \leq E(\mathbf{X}) - \lambda) \leq e^{-\frac{\lambda^{2}}{2 \cdot \sum_{i=1}^{k} E(X_{i}^{2})}}, \text{ for any } \lambda > 0 \\ \hline Prob(\mathbf{k}(\mathbf{t}) \leq t \cdot E(p, r_{T}) - \lambda) \leq e^{-\frac{\lambda^{2}}{2 \cdot t \cdot E(\mathbf{X}(\mathbf{t})^{2})}} \\ Prob(Start(\bar{d}, \bar{t})) &= Prob(\mathbf{k}(\bar{\mathbf{t}}) > \bar{d} - 1) \\ \hline Prob(\mathbf{k}(\bar{\mathbf{t}}) > \bar{t} \cdot E(p, r_{T}) - (\bar{t} \cdot E(p, r_{T}) - \bar{d} + 1)) \\ \hline \bar{t} > \frac{\bar{d} - 1}{E(p, r_{T})}. \quad Then, \\ Prob(Start(\bar{d}, \bar{t})) \geq 1 - e^{-\frac{(\bar{t}E(p, r_{T}) - \bar{d} + 1)^{2}}{2\bar{t}E(\mathbf{X}(\mathbf{t})^{2})}} \end{split}$$

THEORETICAL ANALYSIS(7/8)

• Upper bound of $t : \min\{\overline{t} : P(\overline{d}, \overline{t}, p) \ge \overline{P}\} \le t_{\min}(\overline{d}, p)$

$$\min\{\bar{t}: P(\bar{d}, \bar{t}, p) \ge \overline{P}\}$$

THEORETICAL ANALYSIS(8/8)

• Define
$$\bar{h} = \left[\frac{\ln(1-\sqrt{\bar{P}})}{\ln(1-p)}\right] \longrightarrow Prob(Succ(p,h)) \ge \sqrt{\bar{P}}$$
 for each $h \ge \bar{h}$.

$$P\left(1-e^{-\frac{\left(\left(\bar{t}-\bar{h}\right)\cdot E(p,r_{T})-d+1\right)^{2}}{2(\bar{t}-\bar{h})\cdot E(\mathbf{X}(\mathbf{t})^{2})}} \geq \sqrt{\overline{P}} \ EStart(\bar{d},\bar{t}-h)\right)}{\bar{t}-\frac{\bar{d}}{r_{T}}}$$

$$t_{min}(\bar{d},p) = \frac{\bar{h}E(p,r_{T})^{2}+(\bar{d}-1)E(p,r_{T})-E((\mathbf{X}(\mathbf{t})^{2})\ln\left(1-\sqrt{\overline{P}}\right)+\sqrt{E((\mathbf{X}(\mathbf{t})^{2})\ln\left(1-\sqrt{\overline{P}}\right)\left(-2\bar{d}E(p,r_{T})+2E(p,r_{T})+E((\mathbf{X}(\mathbf{t})^{2})\ln\left(1-\sqrt{\overline{P}}\right)\right)}{E(p,r_{T})^{2}}}{\geq \sqrt{\overline{P}}} \cdot \frac{\bar{t}-\frac{a}{r_{T}}}{\sum_{h=\bar{h}}} \operatorname{Prob}(E\operatorname{Start}(\bar{d},\bar{t}-h)) = \sqrt{\overline{P}} \cdot \left[\operatorname{Prob}(\operatorname{Start}(\bar{d},\bar{t}-\bar{h}))\right]}{\geq \sqrt{\overline{P}}}$$

DISCUSSION AND SIMULATION(1/3)

Dependence on distance :

t_min as a function of distance - p=0.5			t_min as a function of distance - p=0.9	
130			90	
	dist.	$t_{\min}, \ p = 0.5$	$t_{\min}, \ p = 0.9$	% reduction
Heavy	600m	411.4ms	280.43ms	31.8%
traffic	1500m	525.61ms	382.76ms	27.2%
Medium	600m	441.93ms	281.19ms	36.4%
traffic	1500m	572.23ms	385 <i>m s</i>	32.7%
Light	600m	502.39ms	283.77ms	43.5%
traffic	1500m	662.69ms	390.77ms	41%
	4		4	·

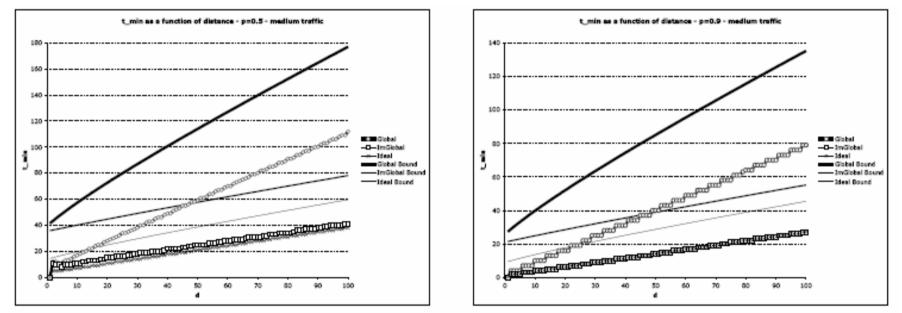
Values of t_{min} for fixed values of p and varying values of \bar{d} . Medium traffic scenario

DISCUSSION AND SIMULATION(2/3)

Dependence on traffic conditions :

	dist.	$t_{\min}, \ p = 0.5$	$t_{\min}, \ p = 0.9$	% reduction
Heavy	600m	411.4ms	280.43 ms	31.8%
traffic	1500 <i>m</i>	525.61 ms	382.76ms	27.2%
Medium	600m	441.93ms	281.19ms	36.4%
traffic	1500m	572.23ms	385ms	32.7%
Light	600m	502.39ms	283.77ms	43.5%
traffic	1500m	662.69 ms	390.77ms	41%

DISCUSSION AND SIMULATION(3/3)



Values of t_{min} for fixed values of p and varying values of \bar{d} . Medium traffic scenario.

- Upper bound is accurate.
- When p is high, IMGLOBAL performs as IDEALIZED.

CONCLUSIONS

- Beneficial effect of Increased 1-hop reliability tends to decrease as the distance from the initiator increases.
- Benefit on multi-hop reliability of having high 1hop reliability tends to decrease as car density increases.
- The dissemination strategy has a major impact on multi-hop reliability, especially when p is high, fast backward is more important.