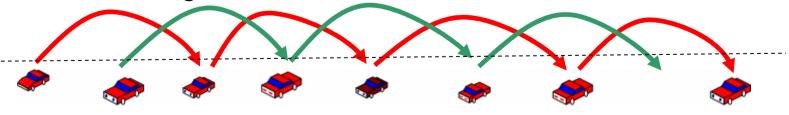


Catch-Up: A Data Aggregation Scheme for VANETs

Conference: ACM VANET'08

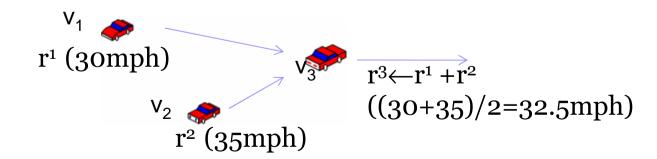
Authors: Bo Yu, Jiayu Gong, Cheng-Zhong Xu

Presenter: 劉哲維


Outline

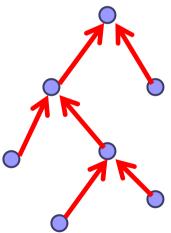
- Introduction
- Related Work
- Distributed coordinated aggregation
- Analysis for upper bound of overview report
- Simulation
- Conclusion

Introduction


- Traffic Information Dissemination
 - □ Each vehicle periodically detects the traffic conditions around it, and then, forwards the information to vehicles following behind it
 - □ Like congestion detection
- Redundant Data & Limited Bandwidth
 - Multiple redundant copies for the same traffic status
 - Consuming a considerable amount of bandwidth

Related Work

- Two aspects
 - □ Routing-related (our focus)
 - How two reports can meet each other at the same time at the same node
 - Data-related
 - Coding, calculation, and compression of aggregatable data

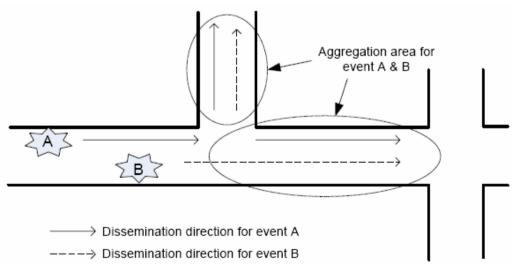


Routing-related

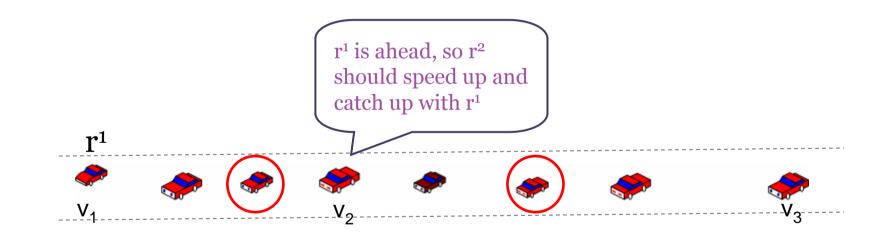
Structured Aggregation

- A routing structure, forwarding tree, is maintained to ensure reports can be forwarded to the same node at the same time
- □ Widely used in sensor networks, but infeasible in VANETs

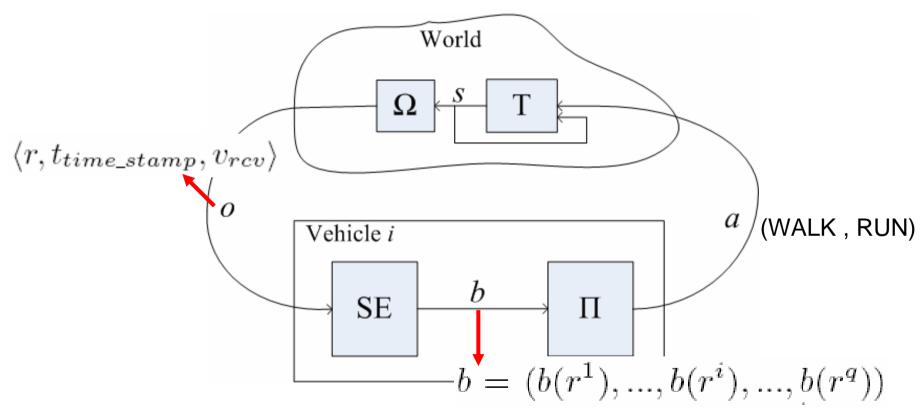
- Structureless Aggregation
 - Randomized Waiting
 - Wait for a random period before forwarding to the next hop
 - During the waiting period, more reports can be received and aggregated
 - □ Periodical Waiting
 - Wait for a fixed period before forwarding to the next hop
- We adaptively change the forwarding delay of individual reports


Distributed coordinated aggregation

- Two Properties
 - Channel Eavesdropping
 - Every node is able to receive reports being transmitted in the channel and log them into its local database
 - □ Traffic Information is delay-insensitive
 - Even a delay of tens of seconds is still acceptable
 - Give us an opportunity to trade off increased delay for reduced communication overhead

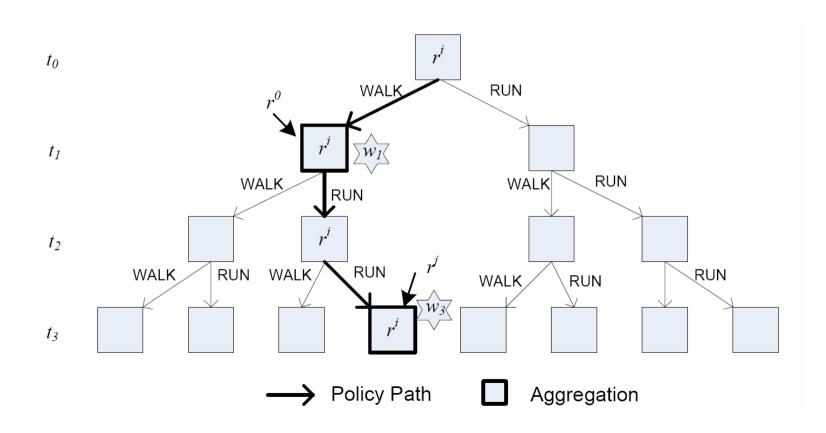

System Model

- Aggregatable Reports
 - ☐ Generated by a change in traffic condition
 - \square Define event frame as $\langle p_1, p_2, t_1, t_2 \rangle$
 - ☐ Generate an overview report for all aggregatable reports
- Data Dissemination



Insert a delay before forwarding a report to the next hop by local observation

Distributed MDP Model



- s world state
- a action
- П Decision Maker

Decision Tree

 \square To find the optimal policy $\pi = (a_0, a_1, a_2, ...), a_i = (WALK, RUN)$

Expected Future Reward

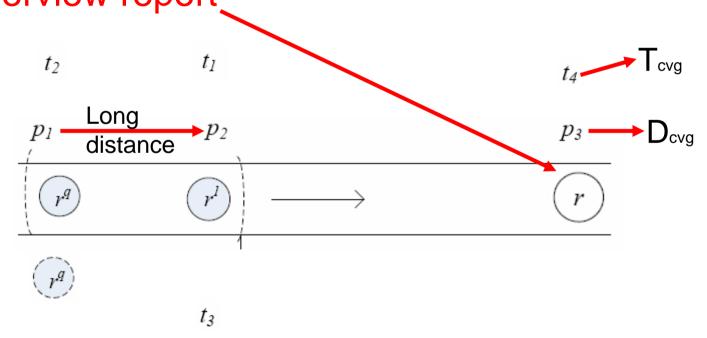
- Objective
 - To find a policy which maximizes the expected future reward
- Policy π
 - Sequence of actions to be performed for a given report in the future
 - $\pi = (a_1, a_2, ..., a_t, ...)$, each element is an action of (WALK,RUN)
- Expected Future Reward

$$R_b(\pi) = \sum_{t>1} \gamma^t \frac{\sum_{1 \le j \le q} b(r^j, p_t) w_t(r^i, r^j)}{q}$$

where γ is a future discount factor and w_t means the expected reward at time t (the saved communication overhead due to aggregation of the reports)

- Virtual Report r⁰
 - □ To encourage some reports to slow down (WALK)
 - \square Probability that report r^i and r^o meet at time t

$$b(r^{0}, t) = \int_{t_{2} \in [t, t+1]} arr(\frac{v_{RUN} - \bar{v}}{v_{RUN}} t_{2}) dt_{2}$$


Internal States

$$\Box$$
 $(r^0, r^1, r^2, r^2, ...)$

Analysis

 All reports from a given road section and from a given time period can be aggregated into an overview report

M

■ The convergence time upper bound:

$$T_{cvg} \le \frac{(p_2 - p_1)v_{RUN} + (t_2 - t_1)v_{RUN}v_{WALK}}{v_{WALK}(v_{RUN} - v_{WALK})}$$

■ The convergence distance upper bound:

$$D_{cvg} \leq \frac{(p_2 - p_1)v_{RUN} + (t_2 - t_1)v_{RUN}v_{WALK}}{v_{WALK}(v_{RUN} - v_{WALK})} \cdot v_{WALK}$$

The total latency upper bound:

$$T_{dism} \le \max(T_{cvg}) + \frac{D_{dism} - \max(D_{cvg})}{v_{FLY}}$$

Simulation

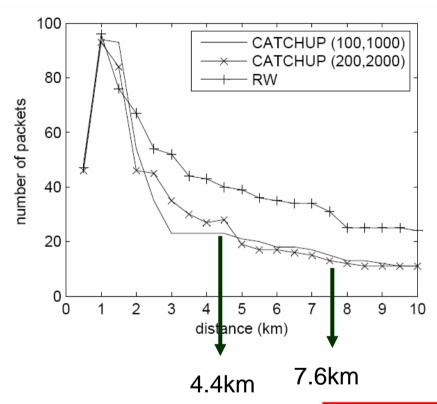
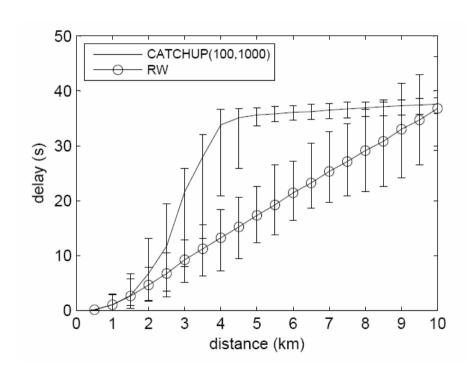

- Based on NS2 and GrooveNet
- Compared to Randomized Waiting (RW)

Table 1: Simulation Configurations		
System Parameter	Value	
Road Length	$10 \mathrm{km}$	
Vehicle Number	300	
Road Section Length	$1 \mathrm{km}$	
Time Frame	30s	
Communication Range	$250\mathrm{m}$	
MAC layer	802.11	
Mobility Model	StreetSpeedModel[2]	
Trip Model	DjikstraTripModel[2]	

Results



CATCHUP(100,1000) - walking speed at 100m/s, running speed at 1000m/s

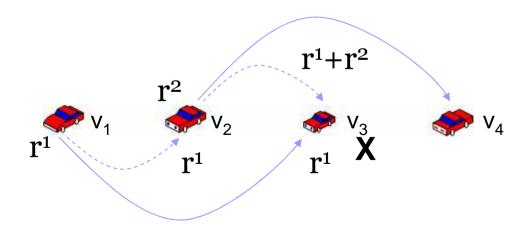
CATCHUP(200,2000) - walking speed at 200m/s, running speed at 2000m/s

Protocol	TotalTrans	MaxCvgDist	MaxCvgTime
CATCHUP(100,1000)	1204	$4.4 \mathrm{km}$	44s
CATCHUP $(200,2000)$	1231	$7.6 \mathrm{km}$	38s
Randomized Waiting	1944	_	-

- CATCHUP trades increased delay for reduced communication overhead
- For CATCHUP, the delay mainly reside within the first 4 km
- For Randomized Waiting, the delay is linear

Conclusion

- We introduced a idea of adaptively controlling forwarding delay in data aggregation in VANETs
- Aggregation is a tradeoff between delay and communication overhead


 One problem is what are the optimal delay values for WALK and RUN for our scheme

Other Issues

Report Overtaking

- How to judge whether a report is contained by another aggregated report?
 - \Box r¹ \in r³ ? where r³=r¹+r²
- Bloom Filter
 - □ A space-efficient probabilistic data structure that is used to test whether an element is a member of a set
 - Each report is attached with a bloom filter table, which includes information of all merged report

Some problems

 Each vehicle can only obtain a partial observation of the world

 We cannot introduce much extra communication overhead for node coordination

- Action a : WALK, RUN
 - ☐ The propagation speed of a report
 - □ Two different delays before forwarding to the next hop
- Observation o : eavesdropped reports
 - □ Tuple <report, time_stamp, action(WALK/RUN)>
- Internal state b : estimated position of reports
 - □ b (r, p_t): Probability that report r is at position p at time t