Diagnosing Wireless Packet Losses in 802.11 Separating Collision from Weak Signal

Outline

COLLIE

FEEDBACK-BASED COLLISION INFERENCE

USING COLLIE FOR LINK ADAPTATION

CONCLUSION

3

4

5

INTRODUCTION

CSMA/CA - the lack of ACK upon timeout gives an indirect indication of a collision.

A packet loss could also be due to weak signal.

The problem of determining the cause of a packet loss to collision versus weak signal, as loss diagnosis.

Motivation

By analyzing the bit-level error patterns in other physical layer metrics can we determine the loss diagnosis.

2. Further, can we do this based on a single packet loss in real-time?

INTRODUCTION

Fig. 1. What link parameters to adapt and how depends on the cause for a packet loss.

Comparison

	Additional transmission	Real time	Analysis packet
Direct	×	Ο	Ο
Indirect	Ο	x	X

COLLIE Collision Inferencing Engine

COLLIE

which separates the cases of collision from weak signal through empirical analysis

Protocol

which adjusts the correct link-level parameters for 802.11

Judgement 7

COLLIE system

AP Module	
eedback	ERROR
~/~	
1	
Q _	COLLIE Client
Collision	COLLIE Client

feedback based collision inference

Experiment Design for Detecting Collisions

Empirical Analysis

Fig. 5. CDF of Bit-Error Rate (BER)

|B| : the length of the symbol-error bursts for burst number i.

Collision Inferencing Algorithm

***RSS observation:**

- Estimating a 'cut-off' value also becomes harder.
- receiver sensitivity

TABLE I COLLISION DETECTION ACCURACY AND FALSE POSITIVE RATES

	BER	EPS	S-Score	Metric-Vote
Accuracy	0.550	0.524	0.441	0.597
False Positives	0.0057	0.022	0.0126	0.024

Packet size

Fig. 9. Scatter-plot of BER vs RSS.

Fig. 8. Scatter-plot of SER Vs EPS

Multi-AP assisted enhancements

Component

- aggregating such feedback at a central COLLIE server.
- The APs implement two functionalities:
 - Synchronize among each APs
 - send a message to the server with the additional following:
 - Time
 - Source and destination MAC address
 - Data rate information

Multi-AP assisted enhancements

Basic versus multi-AP

COLLIE FOR LINK ADAPTATION

The motivation :

How can COLLIE be effective in a link adaptation leading to improvements in throughput?

COLLIE-based link adaptation protocol Goal: utilize COLLIE result in deciding how to react.

COLLIE-based link adaptation protocol

In our implementation, we augment the ARF algorithm with COLLIE to make it collision-aware.

Experiment Static scenario

Fig. 11. Throughput gains for static scenario

COLLIE : the lack of feedback.

Experiment Static scenario

Fig. 12. Throughput variation over time

Experiment Additional collision sources

Fig. 13. Setup for inducing collisions

Fig. 14. Throughput gains of COLLIE in presence of collision sources

Experiment - Mobile scenario

Mobile : client position was continuously varied.

Fig. 15. Observed throughput for mobile scenario

COLLIE : real-time

Emulating a voice call

Fig. 16. Wasted (re)-transmission as a function of channel variability induced through node mobility.

CONCLUSION

We have identified the cause of an erroneous packet reception by physical layer metric in 802.11 systems.

It make link adaption more efficient by Using the COLLIE system.

Thank You !