Minimizing re-routing in MPLS networks with preemption-aware constraint-based routing

Computer Communications July 2002

Outline

- Introduction
- Preemption in MPLS networks
- Previous Work
- Proposed preemption-aware CSPF methods
- Numerical results
- Conclusions

Introduction (1/2)

- Computation of explicit paths with bandwidth requirement
 - Local constraint-based routing by typically, CSPF (Constrained Shortest Path First) algorithms
 - Global path optimization
- Little work on the dynamics of LSP preemption
 - Most proposed CSPF algorithms operate in a simple way regarding LSP priorities
 - When computing the path for an LSP, reservations of lower priority LSPs are not taken into account

Introduction (2/2)

- In this paper
 - The effect of CSPF-based path selection methods on the dynamics of LSP preemption is studied
 - New CSPF algorithms are proposed. They take into account the available resource reservation information of lower priority LSPs.
 - The proposed algorithms aim at minimizing preemption of lower priority LSPs and thus, enhance the stability of multi-priority MPLS networks.

Preemption in MPLS Networks (1/2)

- RSVP-TE and CR-LDP both support 'holding' priority and 'setup' priority (range of 0 to 7)
- IGP extensions of OSPF and ISIS propose to
 - Flood the maximum bandwidth (B_{MAX}) and the maximum reservable bandwidth (B_{max})
 - Distribute $\mathbf{B}_{\mathbf{u}} = (B_{u0}, B_{u1}, \dots, B_{u7})$, unreserved bandwidth at each of the 8 priority levels on a specific link. $\mathbf{B}_{\mathbf{u}}$ is counted in an accumulative way i.e. if a priority-s LSP is established, B_{ui} through B_{u7} will decrease.

Preemption in MPLS Networks (2/2)

- Simplest bandwidth constrained CSPF: an LSP with setup priority *s* and bandwidth requirement B_{LSP}
 - Mark all links invalid where $B_{us} < B_{LSP}$ where
 - Run Dijkstra's shortest path algorithm on the graph composed of the links not marked as invalid

Admission control and preemption decision

- Admission control function: upon a new LSP request, determines to admit, refuse or preemption required
- Selection of LSPs to be preempted is a local matter: in this paper, LSPs can't be preempted from the *n*th level until there are LSPs on the (*n*+1)th priority level.

Previous Work

- Widest-shortest path algorithm (WSPF)
 - ^{2nd} metric: bottleneck link unreserved bandwidth
- Residual bandwidth ratio method (RB-CSPF)
 - 2^{nd} metric: $(B_{\text{us}}-B_{\text{LSP}})/(B_{\text{max}})$
- Discrete link cost method
 - 2nd metric: discretized load-based additive link-cost
- Shortest-widest path algorithm
- Shortest-distance algorithm
 - Dynamically balance the impact of hop count and path load by a variable n, i.e. $n=0 \rightarrow$ shortest path; $n=\infty \rightarrow$ widest path

Proposed preemption-aware CSPF methods (2/3)

Preemption measures

- Free bandwidth $B_{\text{free}} = B_{\text{u7}}$
- Per priority preempted bandwidth $\mathbf{B}_{\mathbf{p}} = (B_{p0}, B_{p1}, \dots, B_{p7})$

procedure CalcBwPreemptionVector(\mathbf{B}_u, B_{LSP}) $\mathbf{B}_p = 0$ $B_{u(-1)} = B_{max}$ for $(i = 7, i \ge 0, i$ -) if $B_{LSP} \le B_{ui}$ return \mathbf{B}_p $B_{pi} = min((B_{LSP} - B_{ui}), (B_{u(i-1)} - B_{ui}))$ end for return \mathbf{B}_p end procedure

Proposed preemption-aware CSPF methods (3/3)

- Priority-aware CSPF metrics
 - Maximize free bandwidth
 - Aim at preempting the fewest possible lower priority LSPs in terms of sum bandwidth
 - Minimize affected priority levels
 - Aim at minimizing the affected priority levels
 - Define $\mathbf{B}_{p}^{1} < \mathbf{B}_{p}^{2}$ iff for their first different coordinate with index *i*, $\mathbf{B}_{pi}^{1} < \mathbf{B}_{pi}^{2}$
 - Priority-aware CSPF algorithm
 - Prune links for which $B_{us} < B_{LSP}$
 - Run shortest path selection based on original OSPF metric
 - Utilize preemption information to select a candidate path

Numerical results (1/4)

Simulation model

- Network topology: 31 backbone nodes and 102 links
- Link capacities: vary between DS-3 and OC-192, with the majority of links having OC-12 capacity
- LSP: random placed with $(0, B_{MaxLSP}]$ uniform-distributed bandwidth, B_{MaxLSP} is 8-10% of OC-12, and [0-7]uniform-distributed priority level
- Compared algorithms:
 - 'random': basic shortest path first algorithm,
 - 'widest': widest-shortest algorithm
 - 'residual bw': residual bandwidth ratio method
 - discrete link cost method and
 - Proposed algorithms: 'max free bw' and 'min affected levels'

Numerical results (2/4)

Preemption effects on widest-shortest method

Numerical results (3/4)

Effect of preemption on path length of LSPs

Numerical results (4/4)

- Impact of preemption minimization
 - Success ratio: roughly the same with all CSPFmethods
 - Preemption ratio and Number of preempted LSPs

Conclusions

- Effects of bandwidth constrained path calculation on the preemption process have been investigated.
- Proposed priority-aware path selection algorithms are better than traditional CSPF methods in terms of total number of preempted LSPs, thus results in less re-routing in the network.
- Future work: carry out experiments
 - To determine the performance of proposed algorithms in case of inaccurate link-state information
 - Using more realistic traffic models in dynamic config.