

A New Bandwidth Guaranteed Routing Algorithm for MPLS Traffic Engineering

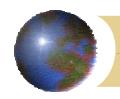
Bin Wang, Xu Su and C.L. Philip Chen IEEE ICC 2002

Outline

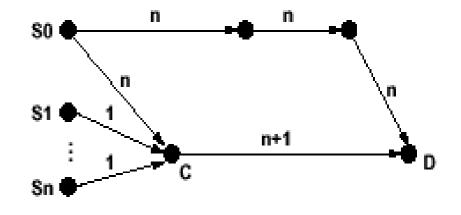
- Introduction
- Problem Formulation
- Existing Routing Algorithms
- Proposed Algorithm
- Performance Studies
- Concluding Remarks

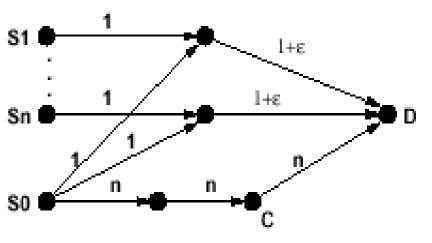
Introduction

- Traffic Engineering
 - Optimize the utilization of network resources
 - Provide for Quality of Service
- MPLS vs. IP Routing
 - Explicit routing vs. Static routing
 - Link state information
 - Constraint-based routing vs. Dynamic routing
 - Connection-oriented vs. Connectionless

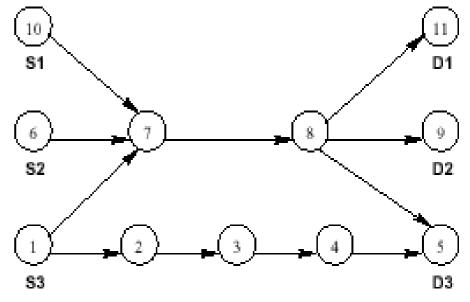

Problem Formulation

- System Model
 - A network of *n* routers, G=(V, E) |V|=n
 - LSP location information is known as a set of ingress-egress router pairs, denoted by *L*
 - Residual bandwidth of link /, denoted by R(I), is accessible
 - Request r_i for LSP setup is represented by a triple (s_i, d_i, b_i) where $(s_i, d_i) \in L$
- Objective: find an LSP routing algorithm to satisfy the demands and make efficient use of network resources


Existing Routing Algorithms


- Routing decision based on
 - Only current network status
 - MHA: Minimum hop routing algorithm
 - WSP: Widest(residual capacity) shortest path
 - SWP: Shortest widest path
 - Traffic profile
 - PBR (Profile-based routing): use measurement based profile to predict future distribution
 - MATE (Multipath Adaptive Traffic Engineering)
 - Interference to potential unknown future requests
 - MIRA (Minimum Interference Routing)

Shortcomings of MIRA (1/2)


- Concentrator graph
 - n+1 requests (S_0, D, n) , $(S_1, D, 1)$, ..., $(S_n, D, 1)$ arrive in sequence
 - MIRA will route (S_0, D, n) along the path $\{S_0, C, D\}$
- Distributor graph
 - prequests of $(S_0, D, 1)$, followed by n more requests $(S_1, D, 1)$, $(S_2, D, 1)$,..., $(S_0, D, 1)$ in sequence
 - MIRA will not route $(S_0, D, 1)$ along the path $\{S_0, C, D\}$

Shortcomings of MIRA (2/2)

- Bottleneck-link graph
 - 3 requests $(S_3, D_3, 1)$, $(S_2, D_2, 1)$, $(S_1, D_1, 1)$ arrive in sequence
 - According to MIRA, if link {7,8} has 1 unit residual bandwidth, it is a critical link, then

- $(S_3, D_3, 1)$ will be routed along the path $\{1, 2, 3, 4, 5\}$
- If link $\{7,8\}$ has 2 unit residual bandwidth, it is not a critical link, $(S_3, D_3, 1)$ will be routed along $\{1,7,8,5\}$

Proposed Algorithm (1/2)

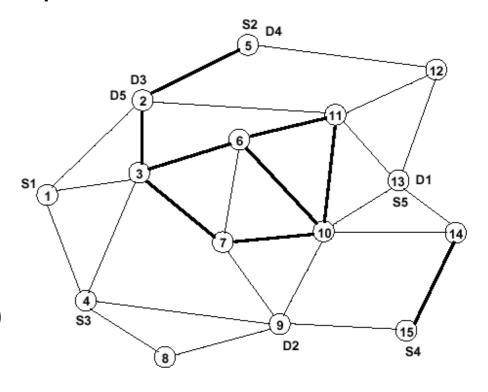
- Idea
 - Similar to MIRA, take into account the importance of critical links
 - Also consider link residual bandwidth and path hop counts
 - Given an LSP request (s,d,b), the impact of routing this LSP on future LSP setup requests is characterized by assigning weights on links

$$w(l) = \sum_{(s',d') \in L} \frac{f_l^{s'd'}}{\theta^{s'd'} \cdot R(l)}, \ l \in E,$$

Proposed Algorithm (2/2)

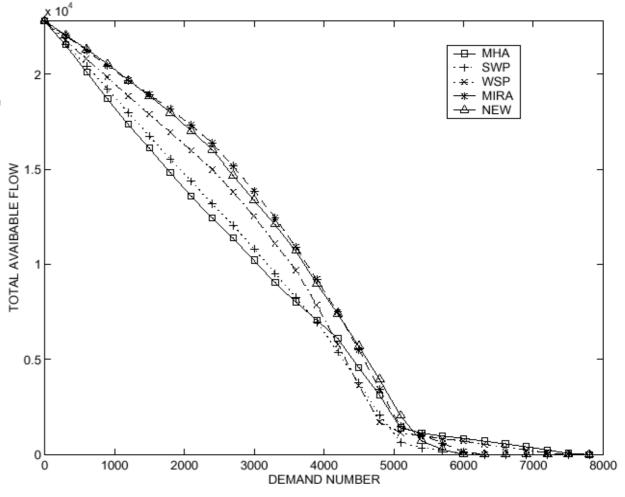
INPUT: G(V, E, B), L, an LSP request (s, d, b).

OUTPUT: A route between s and d having a capacity of b units of bandwidth.

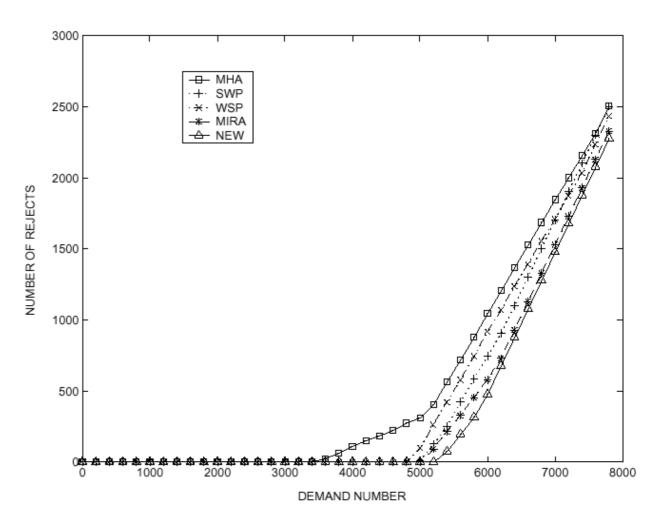

Procedure LSP_Online_Routing (G(V, E, B), r(s, d, b))

- Compute the maximum network flow values for all (s', d') ∈ L;
- 2. Compute the weight w(l) for all $l \in E$ according to Eq. (2);
- Eliminate all links that have residual bandwidth less than b and form a reduced network topology with remaining links and nodes;
- Using Dijkstra's algorithm to compute the shortest path in the reduced network using w(l) as the weight on link l;
- Route the bandwidth requirement of b units from s to d along this shortest path and update the residual link capacities;

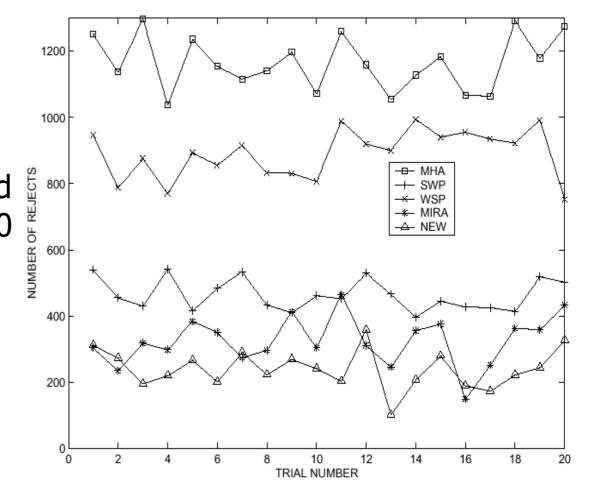
Performance Studies (1/4)


- Simulation network topology
 - 5 potential LSP location pairs
 - Link capacity
 - 1200 units (light link)
 - 4800 units (dark link)
 - LSP requests are randomly chosen from the above pairs
 - LSP bandwidth demands: Uniform(1,4)

Performance Studies (2/4)


- Total available bandwidth v.s. demands
 - Considering long-lived LSPs

Performance Studies (3/4)


- Rejected requests v.s. demands
 - Considering long-lived LSPs

Performance Studies (4/4)

- Dynamic rejected requests
 - LSPs, and 4000 LSPs with exponential holding time

Concluding Remarks

- An online algorithm for dynamically routing bandwidth guaranteed LSP is developed.
- The proposed algorithm considers not only the importance of critical links, but also their relative importance to routing possible future LSP setup requests
- The proposed algorithm leads to improved performance and provides better network resource utilization.