# Comparative analysis of path computation techniques for MPLS traffic engineering

Computer Networks, 2002 Gargi Banerjee, Deepinder Sidhu

### Outline

- Introduction
- TE-Q-metrics constrained path computation
  - TE objectives
  - TE-B-constrained path computation
  - TE-DB-constrained path computation
- Performance Studies
- Conclusion

#### Introduction

- Adding more bandwidth to networks is not the solution to all congestion problems
- QoS-constrained routing (MCP problem)
  - Single QoS constraint
  - Multiple QoS constraints
- TE path computation (MCOP problem): optimize TE objectives while satisfying QoS constraints
  - To solve the TE-Q-metrics constrained path computation problem
  - TE-B and TE-DB heuristics are proposed

## TE-Q-metrics constrained path computation

#### Assume

- Requests arrive online and no priori knowledge of future requests
- Two QoS metrics: bandwidth and delay
- Two forms of QoS requests are considered
  - (A, B, Bw): from A to B with minimum bandwidth Bw
  - (A, B, Bw, D): adds end-to-end delay tolerance D
- The requested bandwidth units are reserved by TE signaling mechanism like RESV or CR-LDP

#### TE objectives (1/2)

- Minimize blocking of future requests
  - By the approach of routing requests along the least flow-blocking path
  - f(i,j): max-flow reduction weight of link l(i,j), max-flow reduction weight of path P is defined as path\_flow\_reduction(P)= f(i,j),  $\forall l(i,j) \in P$
- Minimize the overall cost of paths
  - u(i,j): link cost for link l(i,j), cost of P is defined path\_cost(P)= u(i,j),  $\forall l(i,j) \in P$

#### TE objectives (2/2)

- Distribute the loading on paths
  - link\_load<sub>(l)</sub>= (Reserved Bw on l)/(Total reservable Bw on l) x 100
  - $\begin{array}{ll} \bullet & \mathsf{link\_critical}_{(l)} & = 0 & \mathsf{if} \ \mathit{link\_load}_{(l)} \!\! \leq \!\! \mathsf{U} \\ & = f(\mathit{link\_load}_{(l)}) & \mathsf{otherwise} \\ \end{array}$
  - path\_critical(P)=  $link_critical_{(l)}$ ,  $\forall l \in P$
- TE-Q-metrics problem statement → NP-complete
  - Minimize path\_flow\_reduction(P)
     Minimize path\_cost(P)
     Minimize path\_critical(P)
    - Subject to constraints:
      - 1.  $\operatorname{delay}(P) \leq D$ ,
      - 2. bandwidth(P)  $\geq Bw$



- MIRA: minimum interference routing algorithm
  - Find a path that blocks the smallest available maxflow between all other src-dest node pairs
- WID-SHORT: widest shortest path algorithm
  - If several shortest paths exist, select the widest one
- Shortest-widest
- LCKS: least-critical-K-shortest path algorithm
  - From k shortest paths, select the least critical path

#### Definitions & terminology

```
: Network of n nodes and m links
N(n, m)
            : Link set
            : Given set of all src-dest pairs
S
\theta_{ab}
            : Max-flow between pair (a, b), where (a, b) \in S
            : Union of all minimum cut links between (s,d), for all (s,d) \in S and (s,d) \neq (a,b)
C_{a,b}
            : Load Threshold
            : Link from node i to j
l(i, j)
            : Union of critical links of a network N where l(i, j) is a critical link, if link\_load(l(i, j)) > U
CN
            : Static delay metric for l(i, j)
d(i, j)
            : Static cost metric for l(i, j)
u(i, j)
            : Residual/available bandwidth on l(i, j)
r(i, j)
For each QoS request of the form (A, B, Bw), and \forall l(i, j) \in L, compute weights f(i, j) and w(i, j):
            : \sum_{(s,d):l(i,j)\in C_{sd}} \alpha_{sd}, where, \alpha_{sd} = 1/\theta_{sd}
f(i, j)
            : \beta(i, j) if l(i, j) \in CN, where \beta(i, j) \propto link\_load(l).
w(i, j)
                  if l(i, j) \notin CN
Criticality of a path P is defined as: W(P) = \sum w(i, j), \forall l(i, j) \in P
```

### 1

#### TE-B-constrained path computation

- Rewrite problem as Minimize path\_critical(P) Subject to
  - 1. bandwidth(P)  $\geq Bw$
  - 2. path\_flow\_reduction(P)  $\leq$  F
  - 3.  $path_cost(P) \leq C$

**Algorithm:** For each QoS request (A, B, Bw):

- 1. Compute set  $C_{A,B}$  and weights f(i, j)
- 2. Prune off links that have r(i, j) < Bw
- 3. A = k-shortest path set computed based on constraints C and F
- Compute set CN and weights w(i, j)
- From among k paths in A, select least critical path based on W(P);

Output: TE-bandwidth constrained path

Time Complexity:  $O(min(n^{2/3}, m^{1/2})mlog(n^2/m)logU$ 

+ knlog(kn))



#### Existing TE-DB constrained heuristic

- MIN-DELAY: minimum delay algorithm
  - Prune links that do not satisfy bandwidth requirement
  - Find the shortest path w.r.t. delay
- TAMCRA: tunable accurate multiple constrained routing algorithm
  - Use a non-linear weight function
  - Find a candidate set of k paths whose metrics are far from the constraint bounds

### •

#### TE-DB-constrained path computation

- Rewrite problem as
   Minimize path\_critical(P)
   Subject to
  - 1. bandwidth(P)  $\geq Bw$
  - 2.  $delay(P) \leq D$
  - 3. path\_flow\_reduction(P)  $\leq$  F
  - 4.  $path\_cost(P) \le C$

**Algorithm:** For each QoS request (A, B, Bw, D):

- Compute set C<sub>A,B</sub> and weights f(i, j)
- 2. Prune off links that have r(i, j) < Bw
- A = k-shortest path set computed based on constraints D, C and F
- 4. Compute set CN and weights w(i, j)
- From among k paths in A, select least critical path based on W(P);

Output: TE-bandwidth constrained path

Time Complexity:  $O(min(n^{2/3}, m^{1/2})mlog(n^2/m)logU + knlog(kn))$ 

#### Performance studies

- All links are symmetric and link weights and link delays are assigned randomly
- Size of candidate set of paths, k=4

Request generation model: Uniform: requests are uniformly distributed between all pairs

**Gateway Node** 

Backbone Node

OC12 link

OC3 link Entry/Exit point

- Non-uniform: with hot & cold pairs
  - Hot and cold pairs are evenly distributed
  - Hot pairs are very high in number compared to cold
  - Hot pairs are very high in number compared to cold

#### Performance metrics

- Available max-flow
  - Max-flow factor = (Current available max-flow between all src-dest pairs) / (Initial available maxflow between all src-dest pairs)
- Reducing network cost
  - Path cost: determined by path length
- Distributing load
  - Path load: maximum link load on the component links of a path

### -

#### Max-flow factor (1 QoS constraint)

■ Higher is better



#### Path length (1 QoS constraint)



#### Path load (1 QoS constraint)







#### Path length (2 QoS constraints)



#### Path load (2 QoS constraints)





- 30% of flows are assumed indefinitely long
- The rest of them have a mean holding time of 250 s



#### Blocking probability



#### Conclusion

- Two TE path computation algorithms, TE-B and TE-DB, are proposed to maintain three TE objectives:
  - Increase network revenue
  - Limiting network cost
  - Distributing network load
- TE-B and TE-DB achieve considerable performance enhancements