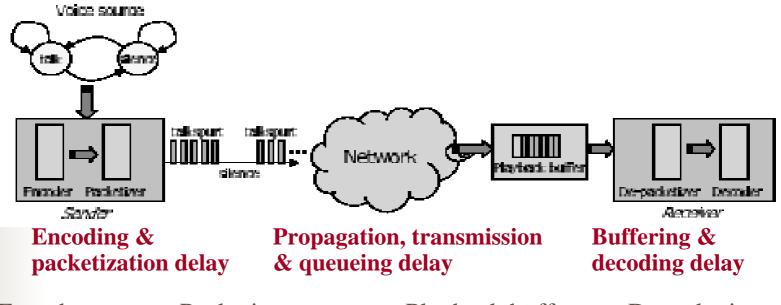
Assessment of VoIP Quality over Internet Backbones

IEEE INFOCOM 2002 Presented by 唐崇實

Outline


- Introduction
- VoIP System
- VoIP Quality Assessment Methodology
- Internet Measurements
- Numerical Results
- Conclusion

Introduction

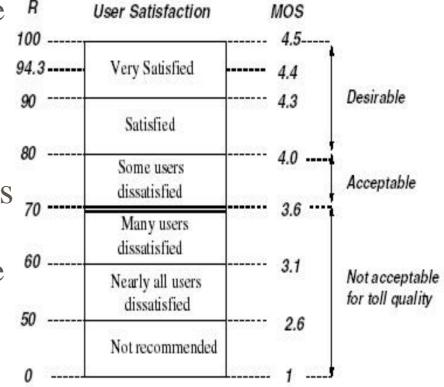
- VoIP: via managed IP network or Internet?
- Objective: to assess to what extent today's Internet stands up to the toll-quality expectation
- Characteristics of the approach
 - Use delay and loss measurements collected by sending probes
 - Use appropriate voice quality measures that take into account various transmission impairments
 - Take into account the effect of different components of VoIP system, with emphasis on playback buffer

VoIP System

Components of the VoIP system

Encoder:
G.711, G.723.1,
G.726, G.729
Voice Activity
Detection (VAD)

Packetizer:
 encapsulate
 speech samples
 into packet of
 RTP/UDP/IP

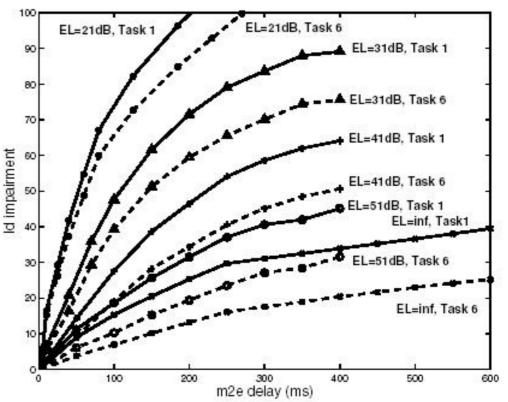

- Playback buffer: two operation modes
- Fixed scheme
- Adaptive scheme $p = d_{av} + 4v$

- Depacketizer
- Decoder
- Packet Loss
- Concealment (PLC)

Assessment Methodology

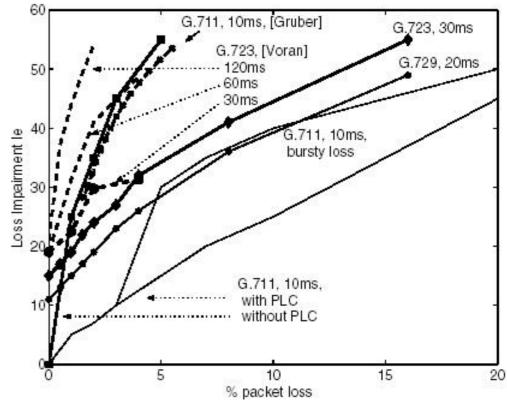
Choose voice quality measures

- Network performance
- Mean Opinion Score (MOS)
- E-model (R-value)
- Combine recent studies to rate an entire voice call, consisting of multiple short speech segments


E-model

- A computational model, ITU-T G.107/G.108
- Represented by psycho-acoustic scale $R = (R_o - I_s) - I_d - I_e + A$
 - **R**_o: effect of noise; I_s : loudness and quantization; intrinsic to voice signal itself and not depend on the transmission over the network
 - I_d : capture the effect of delay, quality degradation due to one-way or "mouth-to-ear" (m2e) delay
 - I_e : capture the effect of signal distortion, called the "Special Equipment Impairment factor"
 - *A* : advantage factor

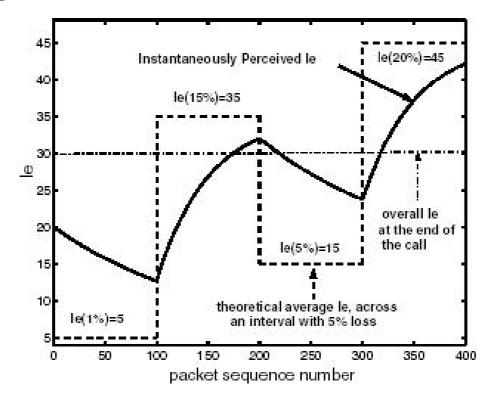
Delay impairment I_d


$I_{d} = I_{dte}(m2e, EL_{2}) + I_{dle}(m2e, EL_{1}) + I_{dd}(m2e)$

- I_{dte} , I_{dle} : impairments due to talker and listener echo
- EL_1, EL_2 : echo losses at the point of reflection
- Tasks (not captured in I_d):
 types of conversation,
 "Task 1" (most stringent)
 "Task 6" (most relaxed)

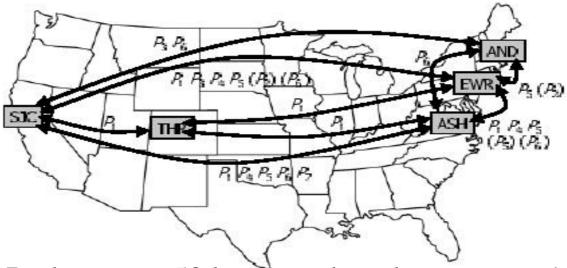
Loss impairment I_e

- I_d captures the distortion of the original signal due to lowrate codec and packet loss
- Impairment increase
 - 4 unit in R scale
 per 1% packet loss
 for codec with PLC
 - 25 units per 1% packet loss for code without PLC


VoIP call quality

- Calculating the average loss rate and the average delay only give a rough estimate
- Approach
 - Divide the call duration into fixed time interval and assess the quality of each interval independently
 - Independent MOS(t) rating of each short interval [9]
 - Take into account the "recency effect"[10]
 - Use variable length intervals to handle the burstiness of packet loss, defined bursts and gaps [4] [7]
 - Assessment of an entire call use both final rating [4] and the worst quality experienced during a call

Instantaneously perceived I_e


- $I_e(loss)$ for a gap or burst, exponential curve with
 - $T_{bad} = 5 \ sec$ for the high loss periods

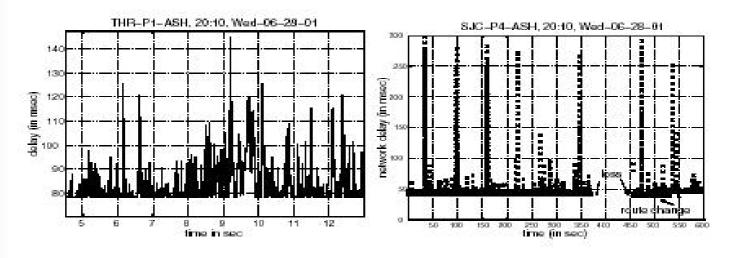
• $T_{good} = 15 \ sec$ for the low loss periods

Measurements Experiments

- Delay and loss measurements by probes
 - Probes were sent by and collected at measurement facilities in 5 major US cities, 43 paths by 7 providers

Probes were 50 bytes each and sent every 10ms from 2001/6/27 19:22~2001/6/29 00:50

Trace Description (1/2)

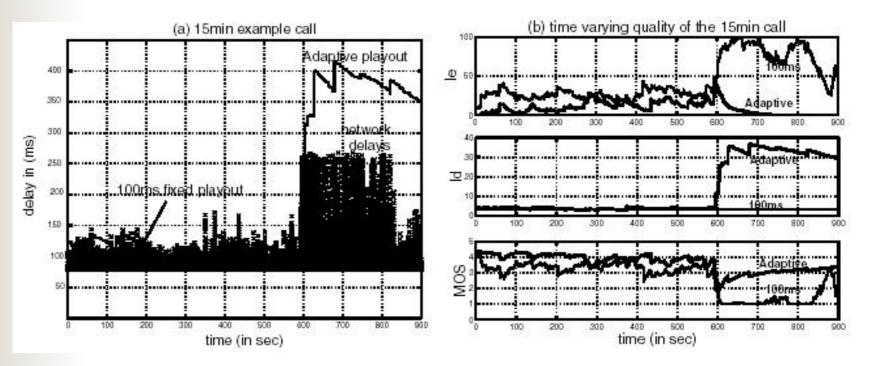

43 paths are classified into 5 types

Туре	Num	Example path				Delay (in msec)				Loss			
										usual loss events		long outages	
		From	Prov.	То	Dist.	min	50%	98%	99%	avg clip (msec)	#clips per hour	duration (sec)	times per day
Α	11	EWR	P_6	ASH	short	3.4	3.6	3.7	3.72	20	1-5	5-12	1-2
В	2	ASH	P_4	EWR	short	6.8	7.2	120	200	20	2-3	12-25	1
С	16	SJC	P_5	EWR	long	32.7	32.8	33.5	34.5	0	0	2	1
D	4	SJC	P_4	ASH	long	45.1	45.4	170	225	10	1-2	15-25	2-3
Е	10	THR	P_1	ASH	long	77.8	78.2	100	210	10	2-20	1	1

- Observation of loss events
 - Only 3 out of 43 paths had consistently no loss
 - 6 out of 7 providers experienced outage periods 10-220 sec for
 1-2 times per day
 - 0.5-2sec loss durations were correlated with delay spikes
 - The number of out-of-order packets was negligible

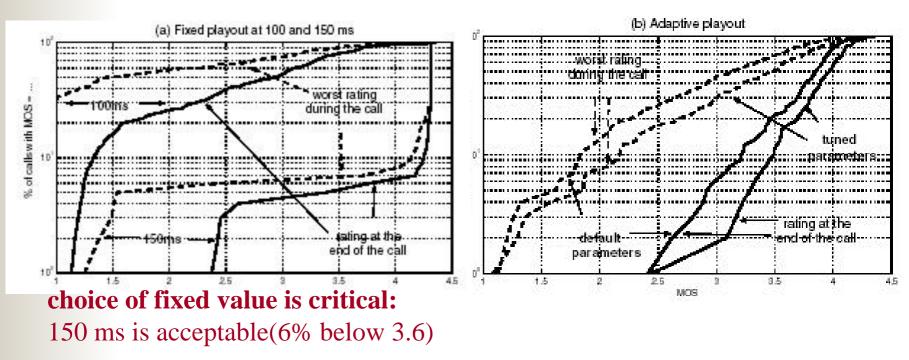
Trace Description (2/2)

- Observation of delay
 - Paths of type A and C have practically no queueing
 - Paths of type B and D have in general low queueing, except for clustered delay spikes
 - Paths of type E: queueing component is high and delay varies

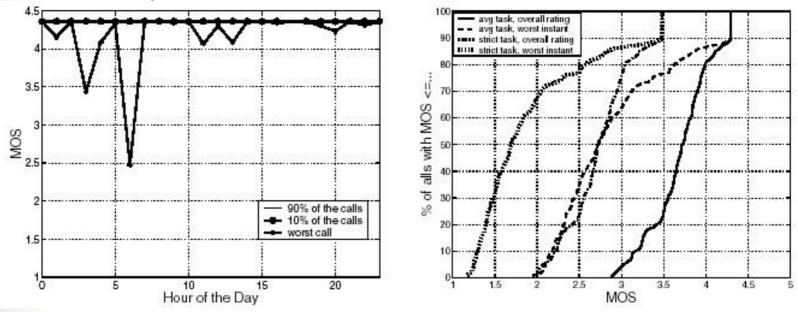


(a) Example trace, type E

(b) Example trace, type D


Numerical Results (1/3)

- An example call trace of type E
 - Large delay variation and a period of sustained loss
 - There exists a tradeoff between loss and delay


Numerical Results (2/3)

- Many calls uniformly spread over an hour
 - 150 short (3.5 min mean): business calls
 - 50 long (10 min mean): residential calls

Numerical Results (3/3)

- All other paths
 - Both short (type A) and long (type C) distance achieve an excellent MOS at all times except for rare cases when network drop occurs.
 - Path of type B and D exhibit periodically clusters of high spikes: packets are dropped at the playback buffer, whether fixed or adaptive

Discussion

- On the performance of the backbone networks
 - Highly loaded paths (type E) as well as some over-provisioned paths exhibiting frequent delay spikes (type B and D) have poor VoIP performance
 - On the playout buffer
 - An appropriate choice of the fixed playout buffer is the one that leads to maximum MOS
 - The need of adaptive playout comes when
 - The delay is high and no margin for overestimating
 - Delay is unknown and receiver doesn't know how to select an appropriate fixed value
 - The adaptive playback was useful on loaded network (type E) that exhibited high and slowly varying delays but fails on others.

Conclusion

- This paper assess the ability of Internet backbones to support VoIP considering realistic configuration.
- In general, backbone networks are over-provisioned, but poor VoIP performance on a large number of ISP backbone networks is observed.
- Action for improving today's VoIP performance to reach toll-quality standards can be taken
 - Inside the network: marking the voice traffic to give it preferential treatment
 - At the receiver, playout buffer scheme should be carefully chosen to match the delay pattern