Issues on IP/MPLS over WDM Network Survivability

> 報告人:唐崇實 Jan. 14, 2004

- Introduction
- Issues Discussion

Introduction

- Recovery scheme of IP/MPLS over WDM
 - Architecture dimension
 IP/MPLS layer versus WDM layer
 - Time dimension
 LSP/lightpath creation/activation time
 - Technology dimension
 Protection versus restoration
 - Space dimension: Local versus end-to-end

Architecture dimension Multilayer network example

- Recovery can be performed on
 - Pure IP
 - Pure IP/MPLS
 - Pure WDM
 - Both IP/MPLS and WDM independently
 - Integrated IP/MPLS and WDM

OTS: Optical Transport System

Time dimension LSP creation and calculation

LSP can be established either

- Topology driven: based on IP routing table
- Request driven: typically used for TE purpose
- Traffic driven: used only in Ipsilon switch
- LSP routes can be calculated at
 - Network plan phase (under given traffic demands)
 - Optimization model solved by ILP, MILP
 - Heuristic algorithms
 - Network operation phase
 - Constraint-based SPF algorithms
 - Heuristic algorithms

Time and Technology dimension Optical network restoration

Category	Calculate path	Calculate channel assignment	Cross- connect	Typical Operation Mode
1	Before	Before	Before	1+1 Protection
2	Before	Before	After	Pre-planned cross- connect maps, difficult to implement
3	Before	After	After	Fixed-route dynamic restoration
4	After	After	After	Fully dynamic restoration

* Before / After failure

Technology dimension

- Shared Risk Link Group (SRLG)
 - An SRLG is a set of links that have the same risk of failure
 - IP/MPLS recovery should find an SRLG-disjoint backup path
 - SRLG disjointness does not guarantee recovery from an LSR failure
 - SRLG information should be provided by WDM layer

MILP solution

- Given traffic matrix, costs for setting up lightpath, and SRLG information
- Objective: to set up primary and backup LSPs
- MILP optimization by
 - Minimize (total cost for lightpath to be requested) subject to
 - Multi-commodity flow constraints
 - SRLG-disjointness constraints
 - Node-disjointness constraints
 - Constraints for capacity on each logical link

Heuristic solution

- Given:
 - Costs of IP/MPLS links between all node pairs
 - SRLG information
- Find: primary LSPs and backup LSPs
- Algorithm
 - Find a minimum spanning tree (MST) over a fully connected graph
 - Set up primary LSPs using MST found above
 - For each primary LSP, find its LSR- and SRLGdisjoint backup LSP

Alternative approach

- Back and forth approach
 - Determine lightpath in WDM layer based on IP/MPLS traffic demand matrix
 - Obtain better node- and SRLG-disjointness
 - Find primary LSPs and backup LSPs based on SRLG information and WDM cost function
 - Improve heuristic algorithm
 - Considering link capacity
 - Considering traffic engineering

- Scalability limitation for MPLS fully meshed networks: number of LSPs is in order of N²
- Solution: Hybrid routing method (HRM)
 - Some traffic via MPLS constraint-based routing
 - The remaining traffic via plain IP routing
 - Principle: based on greedy algorithm, transform plain IP flows to LSP
 - Objective: optimize total packet delay summed over all links

$$\Phi = \sum_{a \in A} \frac{f_a}{C_a - f_a} \quad C_a: \text{ link capacity, } f_a: \text{ traffic load on link } a$$

HRM algorithm

- Model HRM traffic routing to get plain IP flows
- Sort links by decreasing link utili. and select the highest one
- Sort plain IP flows on candidate link by decreasing flow size
- For each of ten largest plain IP flows, try constraintbased routing the candidate traffic demand
- If at least one solution results in improvement of objective, choose best one to implement MPLS tunnel. Update HRM traffic and new highest util. link is the next candidate
- Stop if reaching max. number of LSPs or next candidate link is the lowest util. link

Protection versus restoration

- Protection: consumes double bandwidth and can not be shared among primary LSPs
- Restoration: encounter longer recovery time

Local versus end-to-end

- End-to-end recovery scheme: longer response time to network failure
- Local recovery scheme: sub-optimal flow back problem

References

- "Challenges for MPLS in Optical Network Restoration," IEEE Communication Magazine, Feb. 2001.
- "Cost Efficient LSP Protection in IP/MPLS-over-WDM Overlay Networks," IEEE Proc. ICC, May 2003
- "Fault Management in IP-Over-WDM Networks: WDM Protection Versus IP Restoration," IEEE JSAC, Jan. 2002.
- "A New Scalable, Hybrid Approach for IP Traffic Engineering without Full Mesh Overlaying,"