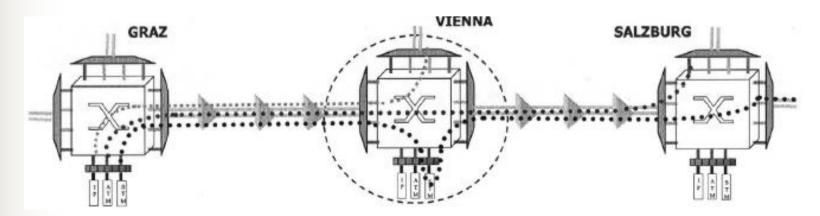
Path Selection Methods with Multiple Constraints in Service-Guaranteed WDM Networks


Admela Jukan and Gerald Franzl IEEE/ACM Trans. on Networking, Feb. 2004 報告人: 唐崇實

Outline

- Introduction
- Network model
- Distributed discovery of wavelength paths
- DWP implementation
- Performance study
- Conclusions

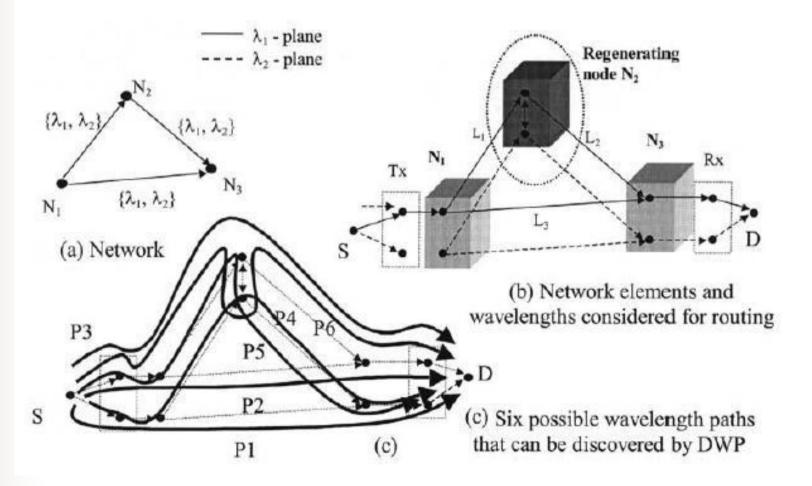
Introduction

- All-optical networks
 - Transparent and cost-efficient operation
 - Signal degradation limit cascadeability of optical components and traffic-dependent signal quality
- Opaque optical networks
 - With electronic regenerators
 - Impose limitations on wavelength routing, such as delay accumulation, reliability reduction and operational cost increase

Network model

- WDM network is modeled as G(V, E)
 - $\Lambda = \{ \lambda_1, \lambda_2, ..., \lambda_F \}: a \text{ pool of wavelength per link}$
 - S = { S_1 , S_2 , ..., S_p }: optical network service set
 - $h_k^{N,L}$: network element associated with a node or link
- Definition 1: Service-Specific Wavelength Set (SWS)
 - $\Lambda_{SWS}[S_r, h_k^{N,L}]: only \ \lambda \in \Lambda_{SWS} \text{ is considered for allocation}$
- Definition 2: Local Network State Information ā
 - Usually several components (metrics) related to $h_k^{N,L}$ and λ_i
- Definition 3: Path Information
- Definition 4: Feasible Path
- Definition 5: Optimal Path

Example		Number of residual wavelengths, w Operational cost, c
N ₂	Network state information	$\overline{a}: A \to \mathfrak{R} \times \mathfrak{R}$
N_1 (2, 7, 3.5) (3, 2, 1) (2, 5, 1) (4, 2, 1) N_5	Operator	$ \begin{pmatrix} q_1 \\ w_1 \\ c_1 \end{pmatrix} \circ \begin{pmatrix} q_2 \\ w_2 \\ c_2 \end{pmatrix} = \begin{pmatrix} q_1 + q_2 \\ w_1 \min w_2 \\ c_1 + c_2 \end{pmatrix} $
(2, 7, 6)	Comparison	$\overline{a_1 \preceq a_2}:$ $(q_1 \leq q_2) \land (w_1 \geq w_2) \land (c_1 \leq c_2)$
(1, 12, 1) N ₄	Desk	$a(P_{sd}) = a(v_s, v_{s+1}) \circ \dots \circ a(v_{d-1}, v_d) = (\frac{d}{d})$
$P_1(N_1, N_2, N_4) = \begin{pmatrix} 6\\2\\4.5 \end{pmatrix}$	Path Information	$= \begin{pmatrix} \int_{a}^{d} q_{a} \\ \min w_{a} \\ \int_{a}^{d} c_{a} \end{pmatrix}$
$P_2(N_1, N_3, N_4) = \begin{pmatrix} 3\\ 7\\ 7 \end{pmatrix}$		$\left(\frac{2}{2}, \frac{2}{2}, \frac{2}{2}\right)$
$P_3(N_1, N_2, N_3, N_4) = \begin{pmatrix} 5\\5\\5.5 \end{pmatrix}$	$\overline{a}(P_1) = \overline{a}(N_1,$	$(N_2) \circ \overline{a}(N_2, N_4) = \begin{pmatrix} 2+4\\ \min(7,2)\\ 3.5+1 \end{pmatrix}$


DWP (Distributed Discovery of Wavelength Paths)

- Step 1: Initialization
 - Set a service specific vector of routing constraints $d(S)=[a_{MAX}, m_{MIN}, r_{MIN}], a \text{ additive}, m \text{ multiplicative}, r \text{ restrictive};$ initialize path state $\bar{a}[a_a=0, a_m=1, a_r=W]$
 - Step 2: Path information update by flooding
 - Forward received path information message with updated parameters to all neighbors not in visited NEs until *dest* is reach
- Step 3: Path selection
 - *dest* selects the best path according to operational criteria from all feasible paths
- Step 4: Signaling of path setup

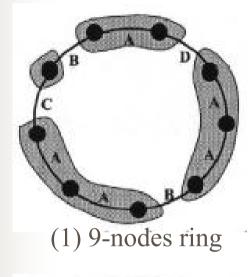
DWP implementation

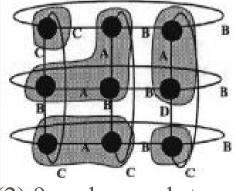
Node Architecture	DWP-R (fully regenerative)	DWP-NF regenerat		DWP-S (Selective)
Network Deployment	DWP-R-ALL	DWP-NR-ALL		DWP-SPAR
Service Type	SRT (constrained by optical reach and delay)		SDT (constrained by optical reach only)	
Path Selection Criteria	DWP-MIN-HOP (minimum number of hops)		DWP-LB (maximum number of residual wavelengths)	

Example network

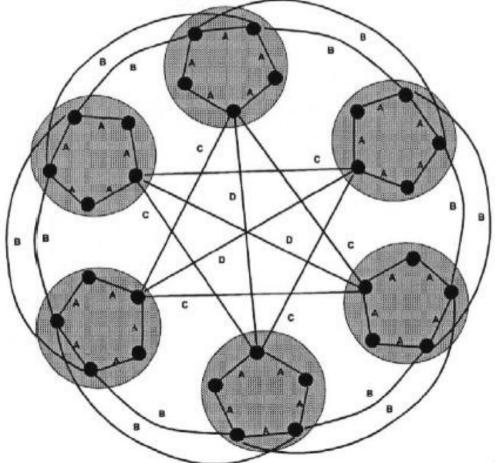
Example network states

- Maximum transmission quality degradation $q_{max}(S_1) \leq 30$
- S_I -specific network states


	$\overline{a} = \begin{pmatrix} a_q \\ a_d \end{pmatrix}$		a _q [dB]	a _d [time units]	
D	S ₁ -specific	C NE			
P_6 —	\rightarrow Tx @N ₁	λ_1, λ_2	4	1	
	−Rx @N ₃	λ_1, λ_2	5	1	
$\nabla a = 18$	Reg@ N ₂	λ_1, λ_2	not applicable	10	
$\sum q = 18$ $\sum d = 17$	N_1, N_2, N_3	λ_1, λ_2	3	1	
∠ u −1/	L_1, L_2	λ_1	10	1	
		λ_2	12	1	
	L_3	λ_1	∉A _{sws} : not applica	ble for S1 (e.g. insuf-	
			ficient quality)		
		λ_2	6	1	

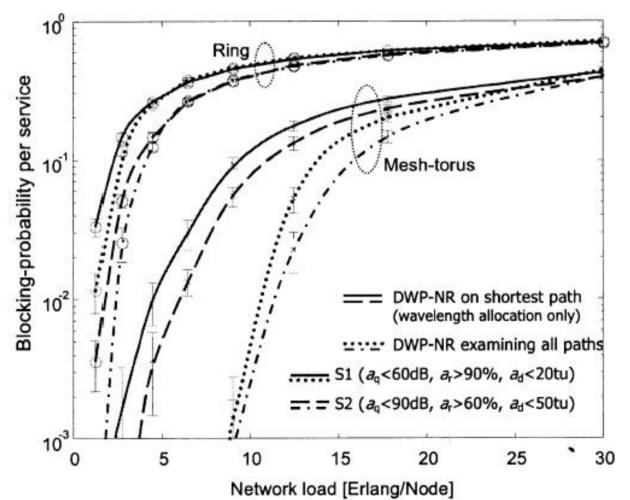

Reducing the flooding

Complexity

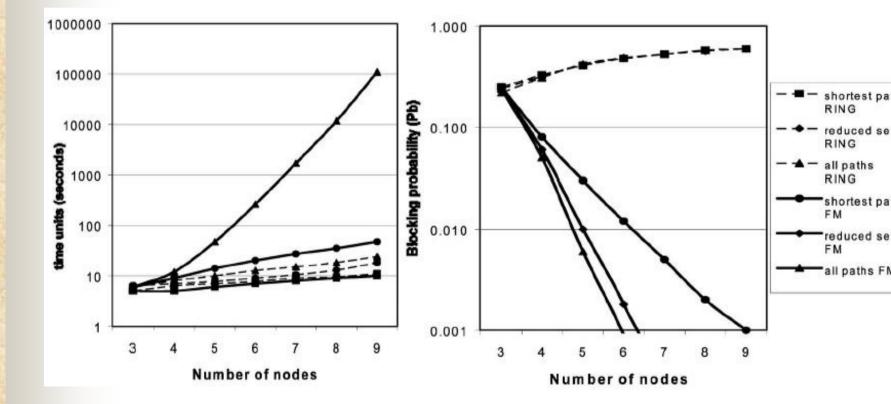

- Number of messages arriving at destination: O(n!m^h), n, h, m denote number of nodes, hops, wavelengths
- Number of message updates: $O(n!m^h \log n)$
- Reducing number of message updates
 - Apply DWP on pre-defined routes
 - Limit the number of wavelength conversion
 - Add additional constraints to the message discarding policy in Step 2

Topologies for study

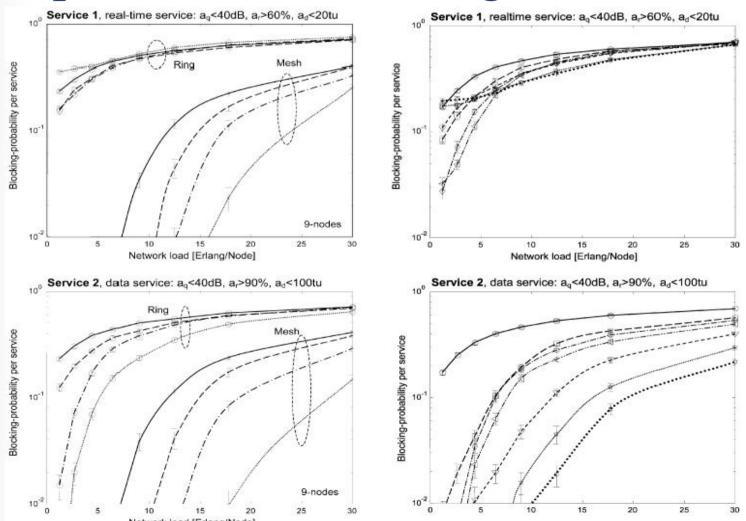
(2) 9-nodes mesh-torus


(3) 6x5-nodes interconnected ring (4) full-mesh

Quality attributes


QUALITY ATTRIBUTES PER WAVELENGTH ALONG DIFFERENT NETWORK ELEMENTS: LINK TYPES, NODES, AND ELECTRONIC REGENERATORS $(a_q: \text{TRANSMISSION DEGRADATION}; a_\tau: \text{RELIABILITY}; a_d: \text{DELAY})$

Link Type / NE a _q [dB]	A	В	С	D	Node	Reg.
	5	12	18	24	3	n/a
$λ_1$ $λ_2$	4.5	10.6	15.7	20.8	3	n/a
λ3	3.9	9	13.4	17.6	3	n/a
λ_4, λ_5	3.4	7.7	11	14.4	3	n/a
λ_6 λ_7 λ_8	5	12	18	24	3	n/a
	6.6	16.3	25	33.6	3	n/a
	8.2	20.6	32	43.2	3	n/a
a _r [%], all	99.9	98.75	97.5	96.5	99.99	99.9
a _d [tu], all	2	5.5	8.8	12	0.0	10


Simulation results for ring and meshtorus networks

Convergence time and blocking prob.

Impact of electronic regenerator

Conclusions

- A new approach to constraint-based path selection for dynamic routing and wavelength allocation in WDM networks is proposed
- The use of regeneration decreases blocking when wavelength services have limited optical reach
- For end-to-end service guarantees, the electronic regeneration on gateway, the constraints on their usage, location, and design, will be critical to enable interconnections of all-optical networks.