Integrated Routing and Grooming in GMPLS-Based Optical Networks

ICC 2004

Presented by 唐崇實

Outline

- Introduction
- Problem definition and network model
- Blocking island paradigm and MS heuristic
- Integrated routing and grooming algorithm
- Performance studies
- Conclusion

Introduction

- IP over WDM optical network
 - Overlay model

Problem definition and network model

- IP/WDM network topology G(V, L, W)
 - V(R,O): set of all nodes,
 R: integrated router/OXC nodes; O: OXC nodes
 - L: set of bidirectional optical links
 - W: set of wavelengths per fiber link
- Based on GMPLS framework, an optical channel (λ -LSP) request is defined as
 - $(X_{\mu}, Y_{\mu}, \beta_{\mu})$: source X_{μ} and destination Y_{μ} with required bandwidth β_{μ}

IP over WDM example network

- Assume each fiber has only one wavelength
- A traffic request arrives (1, 8, 0.5)
- Assume a LSP path of (1->5->3->4->7->8)
 has been found
- Two new lightpaths (cut through arcs) are introduced to form a new topology

Blocking island paradigm

- β -BI for node x is the set of all nodes that can be reached from x using links with at least β available bandwidth
 - $N_1 = (V_1, V_2, V_3, V_4)$ is a 40-BI for node V_1

Blocking island hierarchy

BIG model

- Assume each fiber link carries two wavelength
- Integrated router/OXC nodes have the capability of wavelength conversion
- Add virtual links with weight (distance) of 0

Minimum Splitting heuristic

- MS heuristic: try to find a route which doesn't provoke a split in the corresponding BI graph
- Example: given a request (4, 3, 0.2), another request (1, 2, 0.3) arrives, what's the better route?

Integrated routing and grooming algorithm

- Input: traffic request D(x, y, β); a BIG network and corresponding BIH
- Steps
 - Assign D to appropriate BIG of BIH according to β
 - Route existence check; if route not available, D is blocked
 - Compute K different weighted shortest routes using path cost function
 - Assign each route to all levels of BIH to compute splitting cost
 - Pick the route with minimum splitting cost
 - Update BIG network and affected blocking islands in BIH

Enhanced BIG and BIH construction

- Network topology G(V,L,W), V=(R,O)
 - Replicate original topology G |W| times
 - Each integrated node r has |W| copies, add virtual links r_1r_2 , r_2r_3 , ..., $r_{|W|-1}r_{|W|}$ with unlimited bandwidth and no weight (distance)
- Predefine BIH
 - Pick up β 's according to incoming traffic statistics
 - Example: 0.2, 0.5 and 0.8

Route existence check

- Assume a predefined H-level BIH $(\alpha_1, \alpha_2, ..., \alpha_H)$ where $\alpha_1 < \alpha_2 < ... < \alpha_H$
- Consider a request $D_{\mu}(X_{\mu},Y_{\mu}, \beta_{\mu})$
 - $\beta_{\mu} = \alpha_{i}$
 - β_{μ} > α_{H} : check whether X_{μ} , Y_{μ} are in the same BI of α_{H} -BIG; if no, blocked, else, further check
 - $\beta_{\mu} < \alpha_1$: check whether X_{μ}, Y_{μ} are in the same BI of α_1 -BIG; if yes, route exists, else, further check on whole network
 - $\alpha_i < \beta_\mu < \alpha_{I+1}$: check whether X_μ, Y_μ are in the same BI of α_{i+1} -BIG; if yes, route exists, else, check in α_i -BIG, if no, blocked, else, further check

Path cost and splitting cost

- Path_Cost = N links + P * Active_Lightpaths
 - N: number of new optical links along the path
 - Active lightpaths: cut through arcs already set up
 - P: cost coefficient, usually <1
- Splitting_Cost= N_i*number of splitting in level i
 - N_i: cost coefficient of hierarchy level i
 - Assume H levels, $N_1 = H$, $N_2 = H-1$,... $N_H = 1$

Performance studies

- Compare the performance of BI-based routing algorithm with others
 - IMH: Integrated Min-hop routing algorithm
 - MOCA: Maximum Open Capacity algorithm
 - IWG: IP-WDM Grooming algorithm

Performance studies

- Performance for a random generated network topology
- Pre-define the BIH with 0.1-BIG, 0.3-BIG, 0.5-BIG and 0.8-BIG

Conclusion

- The contribution of this paper is to propose a novel integrated routing and grooming algorithm for routing bandwidth guaranteed paths.
- Simulation results demonstrate the proposed algorithm has a very good blocking probability performance compared with IMH, IWG and MOCA.