On Survivable Routing of Mesh Topologies in IP-over-WDM Networks

IEEE Infocom 2005 Presented by 唐崇實

Outline

- Introduction
- Problem Formulation
- SMART Algorithm
- SMART Application
- Simulation
- Conclusion

Introduction

IP over WDM network

- Protection and restoration mechanisms can be provided at IP layer or WDM layer
- IP layer survivability mechanisms can handle failures that occurs at both layers
- Each logical (IP) link is mapped on the physical (WDM) topology as a lightpath

In this paper

- Only IP restoration is considered
- The existence of a link/node survivable mapping for general mesh topologies at both layers are studied
- SMART– an efficient and scalable algorithm that searches for a survivable mapping is proposed

Notation

- ϕ corresponds to the *physical* topology
- L corresponds to the *logical* topology
- C corresponds to the *contracted* topology
- *a*, *b*, *c*, *d*, *e*, ... are used to denote edges/links
- *u*, *v*, *w*, ... are used to denote vertices/nodes
- p is used to denote a path, $p_{v,u}$: a path from v to u
- $G^{\phi} = (V, E^{\phi}), G^{L} = (V, E^{L})$ physical and logical
- P^φ be a set of all possible physical path, A ⊂ E^L, a mapping M_A is a function M_A: A → P^φ

Mapping Examples

Contraction and Origin

Survivability

• Let $\overline{G^L} = (V, E^L), \overline{A \subset E^L}, \overline{G^C} = (V^C, \underline{E^C}) = \overline{G^L \downarrow A},$ take any connected subgraph $G_{sub}^{\ C} = (V_{sub}^{\ C}, B)$, let M_B be a mapping of the logical link set B • $[G_{sub}^{C}, M_{B}]$ is *link-survivable* if the failure of any single physical link e^{ϕ} does not disconnect G_{sub}^{C} \bullet [G^C_{sub}, M_B] is node-survivable if the failure of any single node $v^* \in V$ does not disconnect the graph $G_{sub}^{C} \setminus \{v^{C} \in G_{sub}^{C} : Origin(v^{C}) = v^{*}\}$ Examples

Examples of Survivability

Piecewise Survivability

- Let M_A be a mapping of a set $A \subset E^L$ on the physical topology
 - $[G^L, M_A]$ is piecewise link/node-survivable if for every vertex v^C of the contracted logical topology $G^L \downarrow A$, the pair $[Origin(v^C), M_A]$ is link/node-survivable
 - Example: in Fig. 1a, the pair [G^L, M_A] is piecewise link- and node-survivable

Expansion of Survivability

• Theorem 1:

- Let M_A be a mapping of a set of logical edges $A \subset E^L$ on the physical topology G^{ϕ} , such that the pair $[G^L, M_A]$ is piecewise link/node-survivable
- Let $G^{C} = G^{L} \downarrow A$, take any subgraph of G^{C} , call it $G^{C}_{sub} = (V^{C}_{sub}, B)$
- Let M_B be a mapping of the set B

⇒ If the pair $[G_{sub}^{C}, M_{B}]$ is link/node-survivable then the pair $[Origin(G_{sub}^{C}), M_{A} \cup M_{B}]$ is also link/node-survivable

Existence of a Survivable Mapping

• Theorem 2:

• Let M_A be a mapping of a set of logical edges $A \subset E^L$, such that the pair $[G^L, M_A]$ is piecewise link/node-survivable

 $\Rightarrow A \text{ link/node survivable mapping } M_{E^{L}}^{surv} \text{ of a set} \\ G^{L} \text{ on } G^{\phi} \text{ exists if and only if} \\ \text{There exists a mapping } M_{E^{L}\setminus A}^{surv} \text{ of the set of} \\ \text{logical links } E^{L} \setminus A \text{ on } G^{\phi} \text{, such that the pair} \\ [G^{L} \downarrow A, M_{E^{L}\setminus A}^{surv}] \text{ is link/node-survivable} \end{cases}$

SMART Algorithm (1/2) (Survivable Mapping Algorithm by Ring Trimming)

- Step 1 Start from the full logical topology $G^C = \overline{G^L}$, and an empty mapping $M_A = \emptyset, A = \emptyset$; Step 2 Take some subgraph $G_{sub}^C = (V_{sub}^C, B)$ of G^C and find a mapping M_B , such that the pair $[G_{sub}^C, M_B]$ is link/node-survivable. IF no such pair is found, THEN RETURN M_A AND $G^C = G^L \downarrow A$, END.
- Step 3 Update the mapping by merging M_A and M_B , i.e., $M_A := M_A \cup M_B$;
- Step 4 Contract G^C on B, i.e., $G^C := G^C \downarrow B$;
- Step 5 IF G^C is a single node, THEN RETURN M_A , END.
- Step 6 GOTO Step 2

SMART Algorithm (2/2)

- SMART converges if the contracted topology G^C converges to a single node
- SMART does not converge if SMART terminates before G^C converges to a single node, and the remaining contracted logical topology G^C = G^L↓A is piecewise link/node survivable

Application of SMART

Formal Verification of Existence of Survivable Mapping

- Two methods to verify the existence of a link/node-survivable mapping for $G^{L} \downarrow A$
 - Exhaustive Search (ES-rem)
 - Separated Path check (SepPath)
 - If G[⊥]↓A contains a path p^c such that all nodes on p^c, but the first and the last ones, are of degree 2, then all the logical links in p^c must be mapped edge-disjointly to enable link-survivability
 - Failure of an exhaustive search for an edgedisjoint mapping of p^{C} will prove impossibility

Modifying Topology to enable Mapping

- After SMART, the remaining contracted logical topology $G^{L} \downarrow A$ and the piecewise-survivable mapping M_{A} are returned
 - Choose at random two nodes u^c , v^c in $G^L \downarrow A$ and pick any two nodes u, v in G^L , such that $u \in Origin(u^c)$ and $v \in Origin(v^c)$
 - Connect u and v with an additional logical/physical link
 - If this link already exists, repeat the procedure

Simulation

Physical topologies

A fraction f of edges is deleted

 Logical topologies: 2-node-connected random graphs of various average vertex degree

Simulation Results

For each number of nodes

- Generate a number of physical/logical topology pairs
- Keep first 1000 for which SMART does not converge

Simulation Results

Conclusion

- Piecewise survivable mapping enables
 - Verification of the existence of a survivable mapping
 - Tracing vulnerable areas in a network and pointing where new links should be added
 - Combination of SMART algorithm and formal analysis of the survivability problem – giving a powerful tool to designing, diagnosing and upgrading the topologies in IP over WDM networks
- Future work
 - Address the capacity-constrained-version problem
 - Consider the case of multiple failures