
On Failure Detection Algorithms 
in Overlay Networks

INFOCOM‘ 2005

2005/09/30



Outline
Introduction
Network Model
Keep-Alive Algorithms
Evaluation
Conclusion



Introduction (1/2)

Overlay networks are seen as an excellent 
platform for large scale distributed systems
-- one reason is resilience: in three aspects

Data replication
Routing recovery
Static resilience

Failure detection algorithms can be classified as
Active approach: periodically send keep-alive messages
Passive approach: 

Use data packets to convey aliveness information, 
Inadequate in several situations
Can be viewed as an optimization of active approach when 
data traffic is present

rely on accurate and timely
detection of node failures



Introduction (2/2)
Two classes of active keep-alive approaches

Baseline: each node independently decides whether its 
neighbors are alive or not
Sharing: nodes share aliveness information and thus can 
reduce the failure detection time

There is a tradeoff between
Minimizing the failure detection time may increase the
Probability of false positive (making a false detection)
The lower the failure detection time, the higher the cost 
of control overhead
Packet loss rate: packets are lost due to forwarding to a 
failed neighbor



Goals of this paper
To examine how keep-alive algorithms can detect 
failures as soon as possible when a node can no 
longer communicate with a neighbor
To examine how the design of various keep-alive 
approaches affect their performance in

Detection time
Probability of false positive
Control overhead
Packet loss rate



Network Model
An overlay network with n nodes

N(A): Neighbor set of A -- Each node A knows d other 
nodes in the network
Node A maintains its neighbor set by sending ack “are 
you alive” probes every Δ seconds to each neighbor
Node failure: assume nodes fail in a failstop manner; 
assume nodes join according to a Poisson process and 
fail according to an exponential distribution
Packet loss: assume due to

Transient problem such as network congestion
Network link failures

Propagation delay: a node consider a probe lost if it 
does not receive an ack within Tto seconds
Probe traffic: a node must bound the aggregate rate of 
probes received to some reasonable rate R



Keep-Alive Algorithms
Five keep-alive algorithms are presented

Not to model a specific keep-alive algorithm but rather to 
capture the essential aspects towards failure detection



Baseline
Node A sends a probe to its neighbor F
every Δ seconds and waits for an ack.
If a probe is not acknowledged within
Tto seconds, it is considered lost

Then next probe is sent Tqp (> Tto) 
seconds after the previous probe, up to
a maximum of c-1 quick probes
A node removes a neighbor from its routing table after c
consecutive timeouts

Tqp

A
Tqp

X
Tto X

Tto … X
Tto

1 2 C-1

X
Tto

Δ

Remove F from 
routing table

time

F



Sharing Negative Information with 
Backpointer State (SN+BPTR)

Sharing Negative Information with 
Backpointer State: share negative
(node is down) information among nodes 
who are interested in a particular neighbor

B(F): Backpointer of F, the set of nodes
which have a node F in their neighbors set
When a node in B(F) experiences c consecutive timeouts 
to F, it sends negative information (boost) to all other 
nodes in B(F)
As in-degree b of a node increases, Δ has to increase 
proportionally to maintain the aggregate probe rate R

Reduce the probability of false positive: impose a 
constraint such that the time span of the last k boosts 
must be less than a time window, Tboost



Sharing Negative Information (SN)
When a node A experience c
consecutive timeouts to a neighbor
F, it sends a boost to its other
neighbors
A node removes a neighbor from
its routing table if it experiences
c consecutive timeouts, or receives k consecutive 
boosts.



Sharing Negative and Positive Information 
with Backpointer State (SNP+BPTR)

SNP+BPTR is similar to SN+BPTR,
with the addition of sharing positive
(node is up) information to reduce
the probability of false positive
When A receives an ack from F and
its boost counter for F is nonzero, it
sends this positive information (posinfo) to
other backpointers (B and C)
When B receives the posinfo, it
resets the boost counter for F to 0
When F is up but the path between it and a node is down, 
the node will still remove F from its routing table because 
posinfo only resets boost counter and not the timeout 
counter



Sharing Negative and Positive Information 
(SNP)

SNP is similar to SN, with the
addition of positive information to
reduce the probability of false
positive
When A receives an ack from F and
its boost counter for F is nonzero, 
it sends this posinfo to its other neighbor (B and C)
When B receives the posinfo and has F as a 
neighbor, it resets the boost counter for F to zero



Evaluation
Simulation and experimental results in the 
context of Chord
Methodology

Start a Chord network with 2000 nodes
Key lookups (packets) are initiated from random sources 
to random keys, timed by a Poisson process at a rate of 
200 per second
Two kinds of loss models are evaluated

LM1: packet losses are due to transient network problem, 
each packet traversing an overlay link is dropped 
independently with fixed probability p = 0.4%
LM2: injected network link failures so that the average 
unavailability of the path is 1.25%



LM1 Results

median node life time = 30 min
size of neighbor set = 44



Metrics vs. Size of Neighbor Set

4.5 times
lower than
baseline

1.8 times
higher than
baseline



Metrics vs. Churn Rate

3-4 times lower 
than baseline

higher churn rate
more node failure

more extraneous boosts



LM2 Results
Simulation with n=1000 nodes, mean lifetime = 
22 min, d=128, and p=0.05
Result for detection time is similar to that under 
LM1 loss model

Probability of false positive Control overhead Packet loss rate



Conclusion (1/2)
Main findings

Detection time vs. sharing
No network failure: sharing achieves both lower 
detection time and control overhead than baseline, 
with comparable probability of false positive
With network failure: sharing improves detection 
time at the cost of increased control overhead

Detection time vs. size of neighbor set
Improvement in detection time between baseline and 
sharing becomes more pronounced as size of 
neighbor set increases



Conclusion (2/2)
Packet loss vs. size of neighbor set

Baseline: packet loss rate is a function of detection 
time, which increases linearly as degree increases if 
probe bandwidth stays constant
Sharing: packet loss rate is a function of path length, 
which decreases as the degree increases

Packet loss rate vs. churn rate
For a target packet loss rate, sharing of information 
allows a network to operate at a higher churn rate 
than baseline


	On Failure Detection Algorithms in Overlay Networks
	Outline
	Introduction (1/2)
	Introduction (2/2)
	Goals of this paper
	Network Model
	Keep-Alive Algorithms
	Baseline
	Sharing Negative Information with Backpointer State (SN+BPTR)
	Sharing Negative Information (SN)
	Sharing Negative and Positive Information with Backpointer State (SNP+BPTR)
	Sharing Negative and Positive Information (SNP)
	Evaluation
	LM1 Results
	Metrics vs. Size of Neighbor Set
	Metrics vs. Churn Rate
	LM2 Results
	Conclusion (1/2)
	Conclusion (2/2)

