Linear Network Coding: Introduction and Application

Presented by 唐崇實 2/16/2006

Outline

- Introduction to Linear Network Coding
- Linear Information Flow (LIF) Algorithm
- Application of Network Coding
- Overlay Network Monitoring
- Summary and Discussion

Linear Network Coding (1/2)

• Encoding

- Original packets *M*¹, ...,*M*ⁿ generated by one or several sources
- Each packet contains *encoding vector* $g = (g_1,...,g_n)$ in \mathbf{F}_{2^s} and *information vector* $X = \sum_{i=1}^{n} g_i M^i$
- The summation has to occur for every symbol position, i.e., $X_k = \sum_{i=1}^{n} g_i M_k^{i}$, M_k^{i} and X_k is the *k*th symbol of M^i and X
- The encoding vector is used by recipients to decode the data, ex: $e_i=(0,...,0,1,0,...,0)$ means M^i
- Encoding can be performed recursively to already encoded packets

Linear Network Coding (2/2)

Decoding

- A node has received the set (g^1, X^1) , ..., (g^m, X^m)
- In order to retrieve the original packets, it needs to solve the system $\{X^j = \sum_{i=1}^n g^j{}_i M^i\}$ — linear systems with *m* equations and *n* unknowns, where the unknowns are M^i
- *m* ≥ *n* is needed to have a chance of recovering all data

Network Code Design

- The problem of network code design is to select what linear combinations each node performs
 - Simple algorithm: each node select uniformly at random the coefficients over the field F_{2^s}, in a completely independent and decentralized manner → the probability of failing to decode at each destination node is 1/ |F|
 - Polynomial-time algorithm for multicasting: using the Linear Information Flow (LIF) algorithm

Polynomial Time Coding

- The algorithm is for centralized design of optimal network multicast codes
- The algorithm consists of two stages
 - A flow algorithm to find, for each sink $t \in T$, a set f^t of *h* edge-disjoint paths from *s* to *t*
 - A greedy algorithm that visits each edge in turn and designs the linear coding employed for that edge → the goal in designing the encoding for e=(v, w) is to choose a linear combination of the inputs to node v that ensures all downstream sinks obtain h linearly independent combinations of the original source symbols b₁,...,b_h

Linear Information Flow Algorithm

• Notation

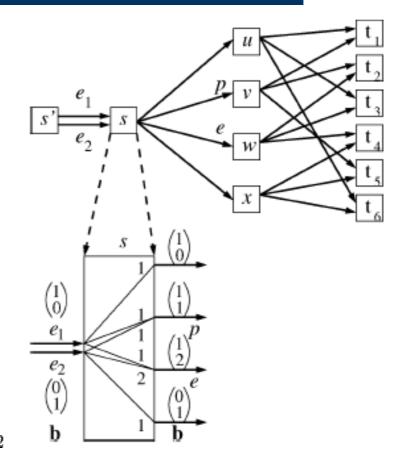
- An acyclic, unit capacity network G=(V,E)
- $s \in V$ is the source node; $T \subseteq V$ is the set of sink nodes
- h is the size of smallest min-cut separating s from any $t \in T$
- $\Gamma_{\rm I}(v)$ and $\Gamma_{\rm O}(v)$ denotes the set of edges feeding into and leaving node v, respectively
- T(e) denotes the set of sinks using in some flow f^t
- $P(e) = \{f_{\leftarrow}^t(e) : t \in T(e)\}$ denotes the set of predecessor edges
- Define a *local coding vector* m_e for each edge e, the symbol carried by edge e is $y(e) = \sum_{p \in \Gamma_I(\text{start}(e))} m_e(p)y(p)$
- Objective: to determine the coefficients $m_e(p)$ such that all sinks can reconstruct the original information

Multicasting with Linear Coding

- Multicast example from s to $T = \{t_1, t_2, t_3, t_4, t_5, t_6\}$
- b: global coding vector

 $\boldsymbol{b}(e) = \sum_{g \in P(e)} m_e(g) \boldsymbol{b}(g)$

- Assume **F**=GF(3)
- $\Gamma_{I}(t_{2}) = \{(v, t_{2}); (w, t_{2})\}$
- start(e) = s, $P(e) = \{e_1, e_2\}$
- $T(e) = \{t_2, t_3, t_4\}$
- $f^{t_4}_{\leftarrow}(e) = e_1 f^{t_3}_{\leftarrow}(e) = e_2$

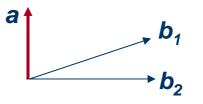


LIF with Linear Independence Testing

```
Function LIF(V, E, s, T)
                                                          find max flow
h := \min_{t \in T} \min \left\{ |C| : C \text{ is } s\text{-}t \text{ cut} \right\}
                                                                                                                   --=\min_{t\in T}|\max \text{ flow from } s \text{ to } t|
 insert a new source s' into V
                                                                                                                        -- help to establish the invariant
 insert h parallel edges \{e_1, \ldots, e_h\} from s' to s into E add artificial edges
 let f^t denote a set of h edge disjoint paths from s to t
                                                                                                                          -- the chosen flow from s to t
 (* We use the notation f_{-}^{t}(e), T(e), and P(e) to access the flows. *) define s \rightarrow t path
 let \mathbb{F} be a finite field of a size satisfying the conditions of Theorem 3
 forall i: \mathbf{b}(e_i) := [0^{i-1}, 1, 0^{h-i}]
                                                                                                                              -- the i-th unit vector of \mathbb{F}^h
 forall t \in T do
                                                          set initial vectors that span F<sup>h</sup>
       C_t := \{e_1, \ldots, e_h\}
                                                                                                                               --t is supplied through C_t
       B_t := {\mathbf{b}(e_1), \dots, \mathbf{b}(e_h)}
                                                                                                                           -- the coding vectors span \mathbb{F}^h
       forall c \in C_t: \mathbf{a}_t(c) := \mathbf{b}(c)
                                                                                                                                            -- inverse vectors
                                                                                                                find resulting coding
 foreach vertex v \in V \setminus \{s'\} in topological order do
        forall outgoing edges e of v do
                                                                                                               vector \mathbf{b}(\mathbf{e}), including
              (* Invariant: \forall t \in T : |C_t| = h and \forall c, c' \in C_t : \mathbf{b}(c) \cdot \mathbf{a}_t(c') = \delta_{c,c'} *)
                                                                                                                        testing for linear ___(*)
              choose a linear combination \mathbf{b}(e) = \sum_{p \in P(e)} m_e(p) \mathbf{b}(p) such that
                                                                                                                            independence
                     \forall t \in T(e) : (B_t \setminus {\mathbf{b}(f^t_{\leftarrow}(e))}) \cup {\mathbf{b}(e)} is linearly independent
              forall t \in T(e) do
                                                                                 form new set of
                     C'_t := (C_t \setminus \{f^t_{-}(e)\}) \cup \{e\}
                                                                                                                         -- advance the set of edges C_t,
                    B'_t := (B_t \setminus \{\mathbf{b}(f_{\leftarrow}^t(e))\}) \cup \{\mathbf{b}(e)\}\mathbf{a}'_t(e) := (\mathbf{b}(e) \cdot \mathbf{a}_t(f_{\leftarrow}^t(e)))^{-1} \mathbf{a}_t(f_{\leftarrow}^t(e))
                                                                                                                     -- update B_t correspondingly, and
                                                                                spanning vector
                                                                                                                            -- update \mathbf{a}_t correspondingly
                     forall c \in C_t \setminus \{f_t^t(e)\}: \mathbf{a}_t'(c) := \mathbf{a}_t(c) - (\mathbf{b}(e) \cdot \mathbf{a}_t(c))\mathbf{a}_t'(e)
                     (C_t, B_t, \mathbf{a}_t) := (C'_t, B'_t, \mathbf{a}'_t)
 return (h, \{m_e : e \in E\}, \{(C_t, \mathbf{a}_t) : t \in T\}, \mathbb{F}).
```

Testing for Linear Independence

- Idea: testing whether a vector is linearly dependent on an *h*-1 dimensional subspace can be done by testing the dot-product of the vector with the vector representing the orthogonal complement of the subspace.
- Maintain the invariant that for each sink *t* ∈ *T* there is a set *C_t* of *h* edges such that the set of global coding vectors *B_t* = {*b*(*c*): *c* ∈ *C_t* } forms a basis of **F**^{*h*}
- Maintain vectors $a_t(c)$ for each sink t and edge $c \in C_t$ that can be used to test linear dependence on $B_t \setminus \{b(c)\}$



Application of Network Coding

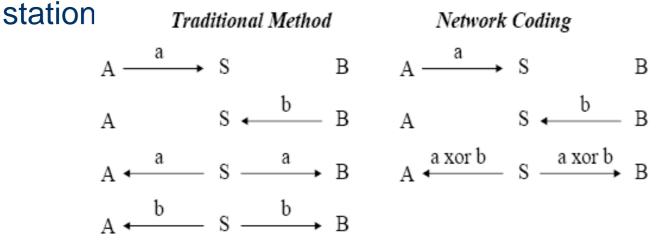
- P2P File Distribution
- Wireless Networks
- Ad-hoc Sensor Networks
- Network Tomography
- Network Security

P2P File Distribution

- Avalanche
 - A server splits a large file into a number of blocks
 - The blocks sent out by the server and peers are random linear combinations of all original blocks
 - A node can either
 - determine how many innovative blocks it can transmit to a neighbor by comparing its own and the neighbor's matrix of decoding coefficients, or
 - simply transmit coded block until the neighbor receives the first non-innovative block
- Network coding helps in
 - Minimizing download times
 - More robust in early-leaving server or high churn rate
 - Small performance penalty under incentive mechanisms

Wireless Networks

• Network coding can improve throughput when two wireless nodes communicate via a common base



- Can be extended to the case of Multi-hop routing in a wireless network (or any other network with physical layer broadcast) where
 - The traffic between two end nodes is bidirectional, and
 - Both nodes have a similar number of packets to exchange

Ad-hoc Sensor Networks

• Untuned radios in sensor networks

- To replace the analog oscillator by a much simpler on-chip resonator → radio frequencies depend on manufacturing
- In dense sensor networks, a multi-hop path between source and sink will most probably exist
- With random network coding, it's possible to use these paths without having to "explicitly find them" and without excessive overhead of flooding

• Data gathering in sensor networks

- Nodes have storage for one single packet
- Overheard packets from neighboring nodes are multiplied with a random coefficient and added to the existing one
- A sink can reconstruct n data packets with a high probability by contacting only n sensor nodes

Network Tomography

• Active monitoring

- Conventional active probing, packets are usually multicast to several receivers.
- The receivers experience the same loss event in the underlying multicast tree
- Using network coding to infer the loss rates of links in an overlay network

• Passive network monitoring

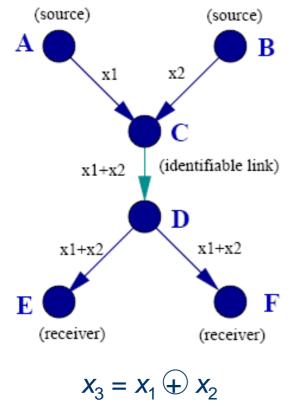
- A random (but fixed) network code allows receivers to determine which coefficients are expected under normal condition
- When the obtained coefficients differ, the receiver can draw out the failure pattern

Network Security

• Secure network codes for wiretap networks

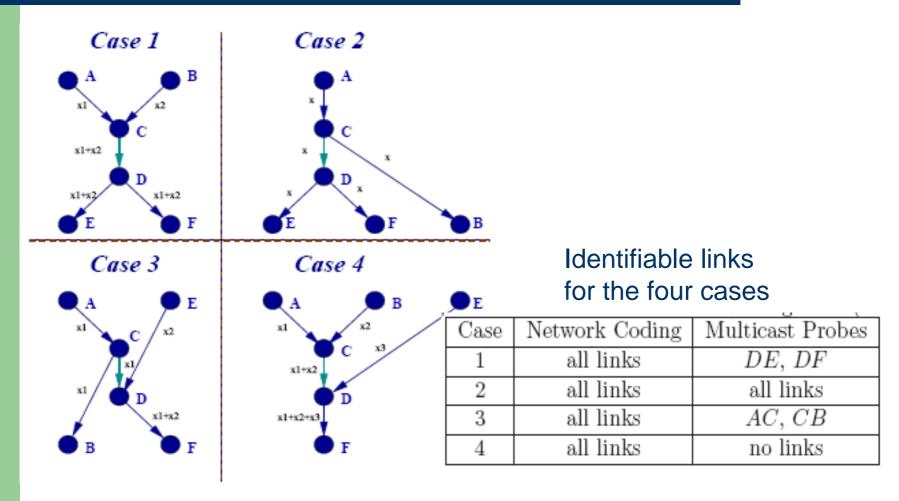
- The source combines the original data with random information and designs a network code in a way that only the receivers can decode
- Weak security
 - With network coding, nodes can only decode packets if they have received a sufficient number of linearly independent information vectors
- Protection against modified packets
 - In the case of network coding, an attacker can't control the outcome of decoding process at the destination, without knowing all other coded packets the destination will receive

Network Monitoring Example



Received at		Is link ok?				
E	F	AC	BC	CD	DE	DF
0	0	Multiple possible events				
x_1	—	1	0	1	1	0
x_2	—	0	1	1	1	0
x_3	—	1	1	1	1	0
—	x_1	1	0	1	0	1
x_1	x_1	1	0	1	1	1
-	x_2	0	1	1	0	1
x_2	x_2	0	1	1	1	1
_	x_3	1	1	1	0	1
x_3	x_3	1	1	1	1	1

Network Coding Improve Identifiability



Summary and Discussion

- Network coding is an efficient and effective technique in many applications
- Two categories of research on network coding
 - To propose more efficient coding and decoding algorithms
 - To apply network coding technique on specific network fields of interest

References

- [1] Christina Fragouli, et. al. "Network Coding: An Instant Primer," LCA-REPORT-2005-010.
- [2] Peter Sanders, et. al., "Polynomial Time Algorithms for Network Information Flow," ACM Symposium on Parallel Algorithms and Architectures, 2003.
- [3] Sidharth Jaggi, et. al., "Polynomial Time Algorithms for Multicast Network Code Construction," IEEE Trans. on Information Theory, June 2005.
- [4] Christina Fragouli and Athina Markopoulou, "A Network Coding Approach to Overlay Network Monitoring," In Allerton Conference, Sept. 2005.
- [5] Christos Gkantsidis and Pablo Rodriguez Rodriguez, "Network Coding for Large Scale Content Distribution," IEEE Infocom 2005