A Multi-Path Load-Shared Failure Recovery Scheme Based on Network Coding

Presented by Chung-Shih Tang Submitted to IEICE Trans. on Comm.

Contents

- Introduction
- Related Works
- NC-LSP
 - Design Idea
 - M+K NC-LSP Recovery Scheme
 - Detailed Algorithm
- Downtime Analysis
- Simulation Results
- Conclusions

Introduction

□ Five dimensions of convergence

- Business convergence
- Terminal convergence
- Service convergence
 - Management convergence
 - Network convergence
- To fulfill the needs of NG multimedia APs, Managed IP network should be
 - QoS capable
 - Embedded with failure recovery and secure transmission

Related Works

Failure Recovery

	Protection	Restoration
Path	faster switchover	slowest switchover
	bandwidth efficient	more bandwidth efficient
Link	fastest switchover	slower switchover
	more bandwidth inefficient	bandwidth inefficient

Network Coding

- Network coding was first introduced to solve the problem of network information flow
- Various applications of network coding including P2P, wireless network, Ad-hoc sensor network, network monitoring and network security

New application of network coding on failure recovery

Design Idea of NC-LSP

To benefit from

- High availability of path protection
- High bandwidth efficiency of multi-path load sharing

M + K NC-LSP

Examples:

Generate packets Q_i 's at node S by linearly combining $P_1, P_{2******} P_M$

M+K disjoint paths from node S to node T thus allowing at least K faults simultaneously

Receive at least Mpackets Q_i 's at node T by solving Mlinear equations

M + K NC-LSP

□ Q1: What is a feasible encoding scheme?

- Linear network coding is selected because of its polynomial time complexity
- Q2: What is the successful decoding ratio if using random linear network coding?
 - Approaching 100% if the symbol size used for coding/decoding is reasonably large
- Q3: what is the total service downtime that can achieve?
 - No switchover required for NC-LSP
 - There will be no service down if no more than K faults occur simultaneously

Successful Decoding Ratio

Detailed Algorithm

Step 1: Find M + K disjoint paths from s to t.

Step 2: On source node s,

- **2a** Divide the demanding bandwidth *B* into *M* equal parts, each part with bandwidth *B*/*M*
- **2b** Whenever transmission, encode *M* packets into *M*+*K* coded packets using random linear network coding as follows
 - (1) For each path (the *i*th one) among the M+K paths, select M random coefficients of GF(2^z), that is, c_{j1} , c_{j2} , ..., c_{iM} .

(2) Generate the *i*th coded packet $\mathbf{Q}_i = c_{i1} \times \mathbf{P}_1 + c_{i2} \times \mathbf{P}_2 + \ldots + c_{iM} \times \mathbf{P}_M$.

2c Send the M+K coded packets over the corresponding M+K paths.

Step 3: On destination node t,

Recover *M* original packets by solving the set of *M* linear equations if receiving *M* or more coded packets

Downtime Analysis (1/2)

Based on recovery model in RFC 3469

Re-routing

Protection switching

Downtime Analysis (2/2)

Service downtime for protection switching

- Time to switchover from active path to backup path
- Multiple faults occur simultaneously on both active and backup paths
- SDT = $(T_d + T_h + T_n + T_o + T_r) * N_{so}(T) + (1 p_a) * (1 p_b) * T$ $N_{so}(T)$: the number of switchover during the period T; $p_{a'}$, p_b : path availability for active and backup paths
- □ Service downtime for *M*+*K* NC-LSP
 - No switchover required, service availability is $\frac{K}{2}(M+K) = M \cdot K$

$$SA(M,K) = \sum_{x=0} \left(\frac{M+K}{x} \right) \times p^{M+K-x} (1-p)^x$$

Path availability $p = (1/\lambda - \mu)/(1/\lambda) = 1 - \lambda * \mu$ $\lambda = path$ failure rate, $\mu = mean$ time to repair (MTTR)

Simulation Experiments

Single request

- Evaluate the average service availability= (simulation time – service downtime)/simulation time
- Assume multi-paths with equal hop count
- Multiple requests over a real network
 - Evaluate the average service down volume
 - Based on COST 239 network with 11 nodes and 25 bi-directional links
 - Capacity matrix in COST 239 is used as the traffic demands of each node-pair request

Service availability for single request

Service availability for single request of low MTTR

Simulation over COST 239

COST 239 network topology

Service down volume for multiple requests

Conclusions

- This paper proposed a novel failure recovery scheme by integrating path protection and multi-path load sharing.
- Under high failure rate and long repair time,
 - 2+1 NC-LSP is liable to experience service failure due to concurrent faults on multiple paths
 - 2+2 NC-LSP can achieve high availability
- Under reliable network and using IP re-routing to reduce network repair time,
 - 2+1 NC-LSP has advantage over the other recovery schemes to achieve nearly seamless failure recovery.

Discussion and Future Study

- □ The success of NC-LSP depends on
 - Existence of multiple disjoint paths
 - Short MTTR
 - Successful network decoding
- Future studies
 - Efficient algorithms to find multiple link/nodedisjoint paths for source-destination pairs
 - Secure transmission paths based on linear network coding using pseudo-random stream