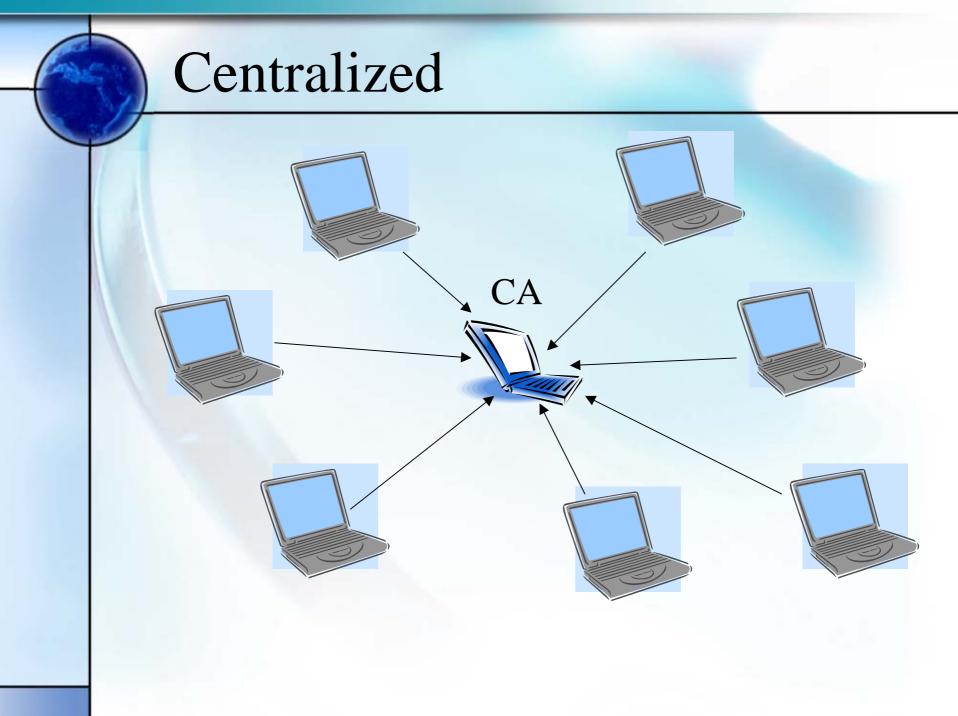
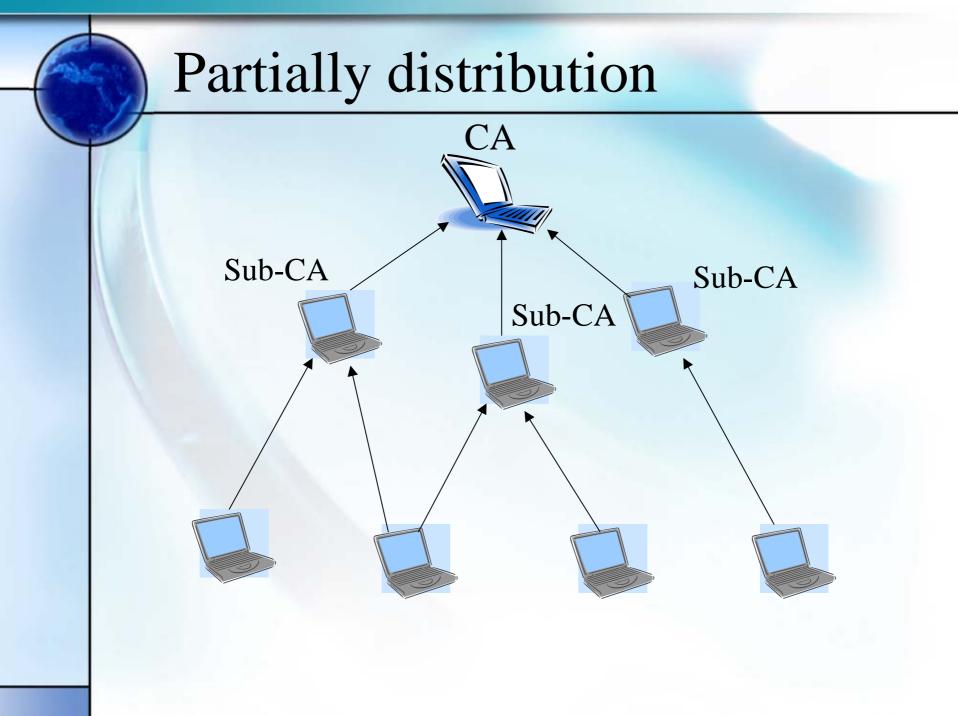
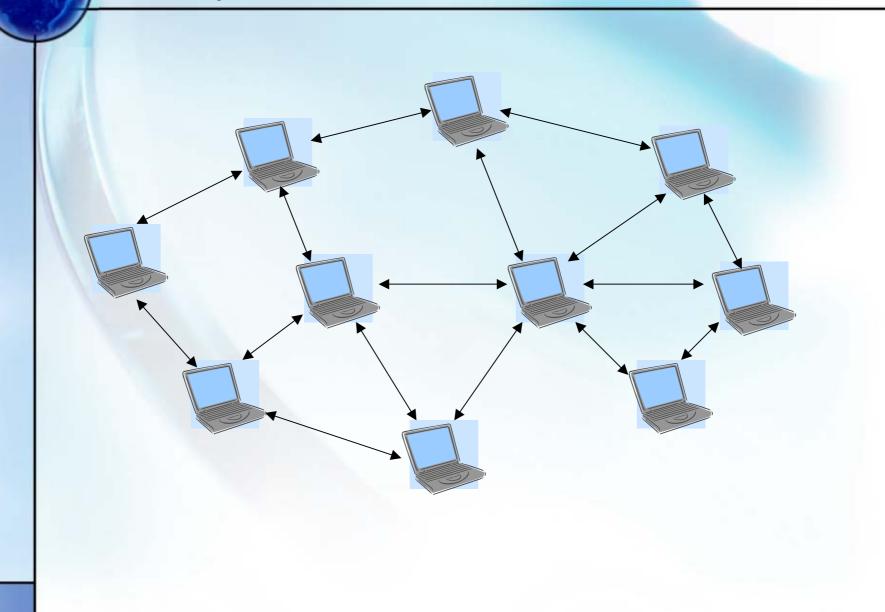
Certificate Management for Mobile Ad Hoc Networks


2003.12.12 林佑青


Outline

- Introduction
- Key management protocols
 - Centralized
 - Partially distribution
 - Fully distribution
- MOCA : Mobile Certificate Authority
 - Secret sharing
- Self-organized public-key management
 PGP extension
- Secure Key Exchange
- Performance
- Conclusion


Introduction

- PKI has been recognized as one of the most effective tools for providing security for dynamic networks.
- It is a challenging task to provide such an infrastructure in ad hoc networks due to their infrastructure-less nature.
- Distributed CAs instead of using single trusted authority.

Fully distribution

Threshold Cryptography

(n,k) threshold scheme

- Divide a secret key (D) into n pieces, D_1 , D_2, Dn
- Distribute the pieces to n nodes in a group
- Collect any k pieces (k<n) to reconstruct the full secret

How to share a secret

- Shamir's (k, n) secret sharing scheme
- Split secret D
 - Randomly pick a *k*-1 degree polynomial $f(x)=D+a_1x^1+...+a_{k-1}x^{k-1}$
 - Evaluate $D_1 = f(1), \dots, D_i = f(i), \dots, D_n = f(n)$
 - Each node x_i gets his share $y_i = f(x_i)$ for n nodes
 - Given k shares, the polynomial is determined

Example

- (2,3) threshold scheme
 - Secret D=7
 - Random pick 1 degree polynomial
 - f(x) = 7 + 2x
 - Shares $D_1 = 9$, $D_2 = 11$, $D_3 = 13$
- Recovery: provided {D₁=9, D₂=11}
 D₁ = f(1) = D+ a₁= 9
 D₂ = f(2) = D+2a₁=11
 Then we have a₁=2 and D=7

MOCA : Mobile Certificate Authority

- Selected n MOCA nodes.
 - Physically more secure
 - Computationally more powerful
- MOCA nodes provide the functionality of a CA.
- n MOCAs share the CA's private key and any set of k MOCAs can reconstruct the full CA key.
- Use secret sharing protocol.

Partially Distribution (1)

- Certificate authority has a public/private key pair
 - Public key is known by everybody
 - Private key is shared between the n servers
- Each Server
 - Knows the public key of every node
 - Sign partial certificates using his share of the signing key
- Each Client
 - Equipped with MOCA certification protocol

Partially Distribution (2)

Initialization

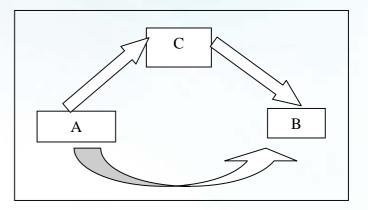
- Clients flood the network with Certification Request (CREQ) and wait for at least k Certification Replies (CERP).
- Certificate retrieval
 - Each server sends a partial certificate signed with his share of the system's signing key
 - The client can then verify it using the system's public key.

Partially Distribution (3)

• The MOCA can handles the lack of server infrastructure by distributing the CA.

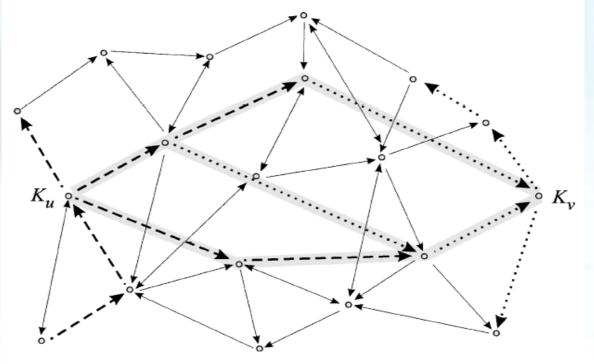
• Availability relies on:

- The choice of the threshold parameters (k,n)
- The choice of the servers nodes


• High overhead due to its flooding nature.

Fully Distribution (1)

- Self-Issued Certificates: Extension of PGP
- No need for an authority
- Each node creates his public / private key pair
- Certificate Issuing
 - Users are able to issue certificates to others
 - Based on trust (Secure channel), certificate received by a trusted user.
- Each node maintains a repository
 - The certificate he has issued
 - The certificates other users have issued to him


Fully Distribution (2)

- When a user A wants to obtain the public key of another user B, A acquires a chain of valid public-key of user B :
- Certification Chain between two users
 - A wants B's certificate
 - But A only has C's certificate and A trusts C
 - C has B's certificate
 - Chain from A to B through C

Fully Distribution (3)

- System represented as a oriented graph
- Certificate verification
 - Users merge their repositories
- Certificate Chain = Directed path from u to v

Fully Distribution (4)

- A fully self-organized public-key management system for mobile ad hoc networks.
- Key authentication based only on their local information.
- Availability don't need any authority
- Entirely relies on mutual trust between users.

Fully Distribution (5)

- Provides availability
- Higher communication overhead
- Large computation

Secure Key Exchange (1)

- The idea underpinning the solution is extremely straightforward, as it simply mimics human behavior.
- Exchange sensitive information over a secure channel (location-limited channel)
- Location-limited channel
 - Separate from the main wireless link
 - Infrared, bluetooth

Secure Key Exchange (2)

- Doesn't require neither authority, nor prior relationship between users.
- Pre-authentication phase
 - A device can "touch" the device he wants to authenticate
 - Location-limited channel
 - Exchange public information
 - Public key
 - Digital certificate
 - Confidentiality is not required

Secure Key Exchange (3)

- Provide an intuitive way to identify and authenticate communicating entities
- Doesn't rely on any authority
- Formation of self-configured networks
- Not scalable when there are a lot of devices
- Requires devices to have location-limited channels

Performance (1)

	Scheme	Centralized	Partially distributed	Fully distributed
	Node increases	92%→22%	88%	96%
L	Traffic load increases	80%→45%	85%	95%
	Channel error rate increases	80%→50%	85% →82%	95% →93%

Performance (2)

Scheme	Centralized	Partially distributed	Fully distribute d
Scalability	Bad	Good	Good
Availability	Bad	Medium	Good
Robustness	Bad	Medium	Good
Communication	Centralized	Distributed	Localized
Computation	Server	Shared	Shared

Conclusion

- Solutions to provide security mechanisms and key management with different approaches.
 - Distribution of certificate authority
 - Self-organized ad hoc networks
- Traffic overhead, computation, power consumption
 - Solutions based on public-key cryptography and certificates are expensive
 - Reduce the communication overhead.

References

- [1] Seung Yi, Robin Kravets, *MOCA : Mobile Certificate Authority for Wireless Ad Hoc Networks*, 2nd Annual PKI Research Workshop Program (PKI 03).
- [2] Seung. Yi and Robin. Kravets, *Key Management for Heterogeneous Ad Hoc Wireless Networks*, IEEE ICNP'02.
- [3] A. Khalili, J. Katz and W.A. Arbaugh, *Towards Secure Key Distribution in Truly Ad Hoc Networks*; University of Maryland
- [4] H. Luo, P. Zerfos, J. Kong, S. Lu and L. Zhang. *Self-securing Ad Hoc Wireless Networks*, IEEE ISCC 2002.
- [5] JP Hubaux, L. Buttyan and S. Capkun, *Self-organized Public-Key Management for Mobile Ad hoc Networks*, IEEE Transactions on Mobile Computing, Jan. 2003.
- [6] D. Balfanz, D. K. Smetters, P. Stewart and H. Chi Wong, *Talking to Strangers: Authentication in Ad hoc Wireless Networks*, Conference Proceeding of NDSS Conference 2002.
- [7] Srdjan Capkun, Jean-Pierre Hubaux, Levente Buttyan, *Mobility Helps Security in Ad Hoc Networks*. ACM MobiHoc 2003.
- [8] M.C. Morogan, S. Muftic, *Certificate Management in Ad Hoc Networks*. IEEE SAINT'03
- [9] H.Yang, G. Zhong, S. Lu, Network Performance Centric Security Design in MANET. IEEE Mobile Computing and Communication Review.