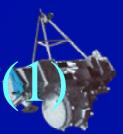
IP Address Handoff in the MANET

IEEE INFOCOM 2004

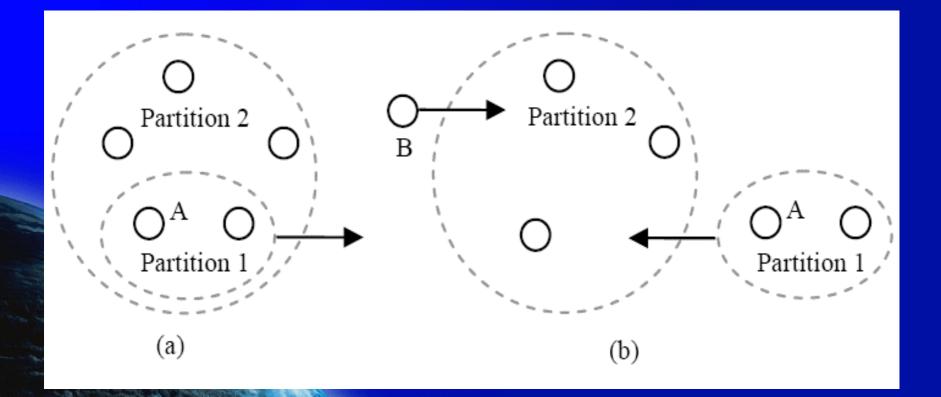

2004.2.19 林佑青

Outline

- Introduction
- Issues and related work
- Solutions
 - Broken routing fabrics
 - Broken communications
- Performance evaluation
- Conclusion

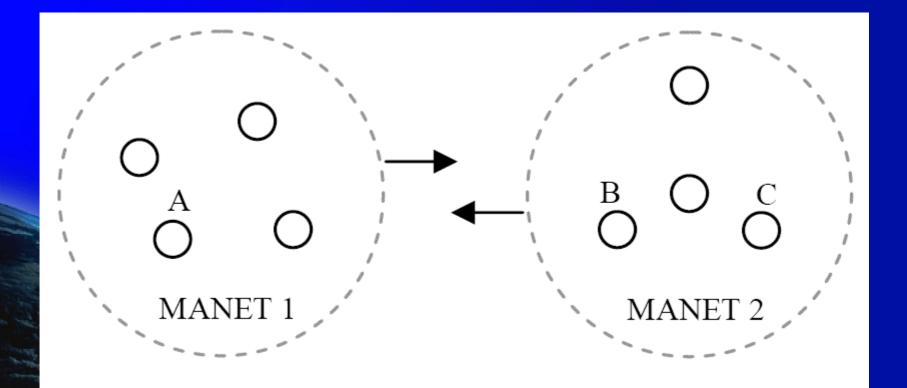


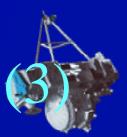
Introduction

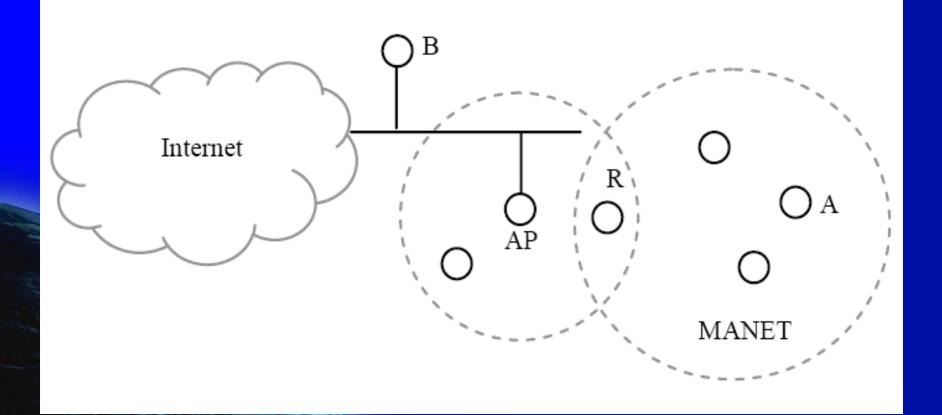


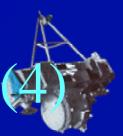
- A mobile node in the MANET may change its IP address more frequently due to the deployment of autoconfiguration, global connectivity, and hierarchical addressing schemes.
- There are some solutions for IP address change, but the overhead resulting from address changes has not been carefully examined.

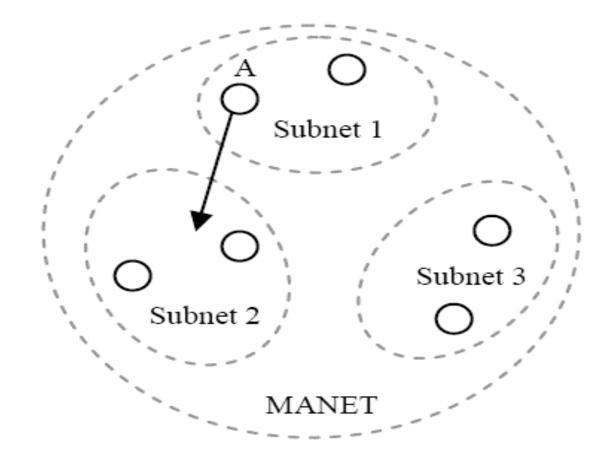
Scenarios of IP address change


Merger of two partitions of a network

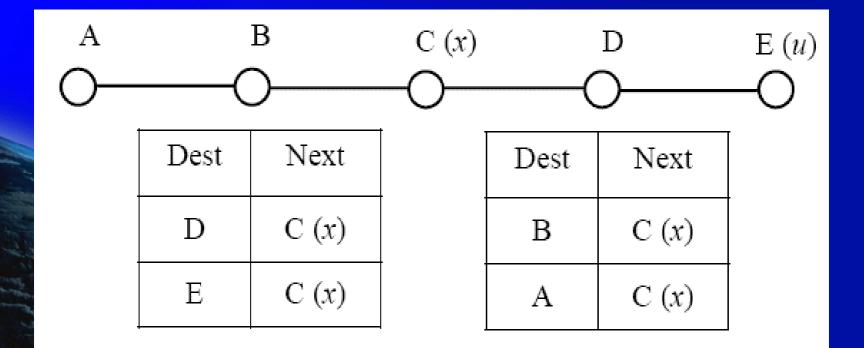

Scenarios of IP address change (


Merger of two independent MANETs


Scenarios of IP address change (


Merger of a MANET with a LAN

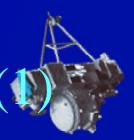
Scenarios of IP address change


A MANET with a hierarchical addressing

Issues

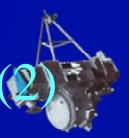
- Broken routing fabrics
- Broken on-going communications

Related work



Mobile IP

 The nodes in the MANET are mobile and instable, none of them can be designated as the home agent or foreign agent for another node.


- Tunneling mechanism
 - IP-in-IP
 - Overhead
 - DoS attack

Solutions to broken routing fabrics (1)

- Assume AODV as the routing protocol.
- Route Shift packet
 - Contains the source's old address and new address.
 - On receipt of the packet, the neighbors change the next hop from x to y.
 - It is vulnerable to IP spoofing attacks.

Solutions to broken routing fabrics (2

- Cryptographic method
 - Node C signs the Route Shift packet with its private key.
 - All neighbors contact the CA to get the certificate for node C's public key and validate it.
 - Disadvantage
 - Delay and communication overhead.

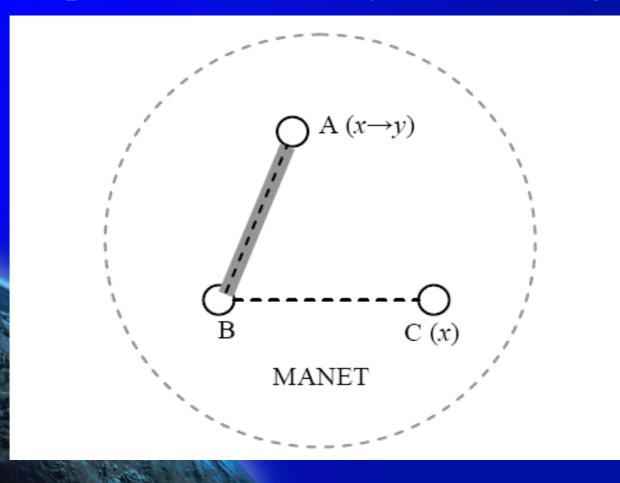
Solutions to broken routing fabrics (§

- Node C chooses a random number for address x, and puts the hash value of the number in the Route Shift packet.
- All its neighbors store the hash value in the neighbor tables and routing tables.

Solutions to broken communications

- Suppose that node A is communicating with node
 B, and node A change its address from x to y.
- Route rebuilding
 - Broadcast of RREQ to build the path
- NAT

Node A : new destination address of y → x
 old source address → new address
 Node B new source address of y → x
 old destination address → new address

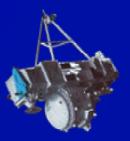

Solutions to broken communications

Advantages

- The overhead of a second IP header is saved.
- Only one address in the IP header is modified in NAT, faster when applied with the improved computation of IP checksum.
- The tunneling scheme brings a "DoS" problem.

DoS problem caused by IP tunneling

Solutions to broken communications (4)

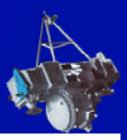

 Extends NAT to utilize both port numbers and sequence numbers to distinguish different connections at node B.

1	2	3	4	5	6
Old remote address	New remote address	Local port	Remote port	Remote sequence number	Next remote sequence number
x	У	80	2030	228743	22884312

Solutions to broken communications

- Address Change Message (ACM)
 - Includes the old address, new address, protocol, local port, remote port, and sequence number.
- To save communication overhead, the message can be combined with the RREP packet.
 - To prevent IP spoofing attacks, the ACM packet must be signed with node A's private key, which can be validated with A's public key at note B.

Performance evaluation


Overhead of broken routing fabrics
 – 2pl packets

- Overhead of broken communications
 - 2ml packets

N nodes, 1 links

K connections with m nodes and on p active paths.

Implementation

💙 cap	_handoff1 -	Ethereal			
File	Edit (Capture Display	lools		
No	Time	Source	Destination	Protocol	Info
	0,000000	192,168,1,155	192,168,1,173	TCP	10000 > 10000 [SYN] Seq=2716095825 Ack=0 Win=5840
2	0,001809	192,168,1,173	192,168,1,155	TCP	10000 > 10000 [SYN, ACK] Seq=787063896 Ack=271609
3	0.001870	192.168.1.155	192.168.1.173	TCP	10000 > 10000 [ACK] Seq=2716095826 Ack=787063897
4	2,941862	192,168,1,155	192,168,1,173	TCP	10000 > 10000 [PSH, ACK] Seq=2716095826 Ack=78706
្ត	2,943534	192,168,1,173	192,168,1,155	TCP	10000 > 10000 [ACK] Seq=787063897 Ack=2716095830
. 6	2.944257	192.168.1.173	192.168.1.155	TCP	10000 > 10000 [PSH, ACK] Seq=787063897 Ack=271609
7	2,944282	192,168,1,155	192,168,1,173	TCP	10000 > 10000 [ACK] Seq=2716095830 Ack=787063901
8	28,331967	192,168,1,140	192,168,1,173	TCP	10000 > 10000 [PSH, ACK] Seq=2716095830 Ack=78706
9	28.333859	192.168.1.173	192.168.1.155	TCP	10000 > 10000 [PSH, ACK] Seq=787063901 Ack=271609
10	28,333918	192,168,1,140	192,168,1,173	TCP	10000 > 10000 [ACK] Seq=2716095834 Ack=787063905
11	39,547260	192,169,1,140	192,168,1,173	TCP	10000 > 10000 [PSH, ACK] Seq=2716095834 Nek=78706
12	39,550315	192,168,1,173	192,168,1,155	TCP	10000 > 10000 [PSH, ACK] Seq=787063905 Ack=271609
13	39,550367	192,168,1,140	192,168,1,173	TCP	10000 > 10000 [ACK] Seq=2716095838 Ack=787063909
14	41,621408	192,168,1,140	192,168,1,173	TCP	10000 > 10000 [FIN, ACK] Seq=2716095838 Ack=78706
15	41.623089	192.168.1.173	192.168.1.155	TCP	10000 > 10000 [FIN. ACK] Seq=787063909 Ack=271609
16	41,623156	192,168,1,140	192,168,1,173	TCP	10000 > 10000 [ACK] Seq=2716095839 Ack=787063910

□ Frame 1 (74 bytes on wire, 74 bytes captured)
 □ Ethernet II, 5rc: 00:02:2d:2d:2f;6F;67, Dst: 00:10:dc:55:58:49
 □ Internet Protocol. Src Addr: 192.168.1.155 (192.168.1.155). Dst Addr: 192.168.1.173 (192.168.1.173)
 □ Transmission Control Protocol, Src Port: 10000 (10000), Ist Port: 10000 (10000), Seq: 2716095825, Ack: 0, Len: 0

Conclusion

- X
- Introduced the Route Shift packet, address Change Message, and NAT scheme to solve the address change problem.
- Future work
 - Simulation of the schemes needs more effort.
 - Implementation only aims at one node's address change.
 - The scenarios of more connections and more address changes .