A Key Management Scheme for Wireless Sensor Networks Using Deployment Knowledge

INFOCOM 2004

2004.06.10 Yu-Ching Lin

Outline

Introduction @ Related work Modeling of the deployment knowledge Key pre-distribution scheme
 Evaluation
 © Conclusion

Introduction

Applications of sensor networks Military sensing and tracking Environmental monitoring Output A line of the second Sensor node constraints Battery power © Computing ability Memory

Sensor networks' constraints affect the design of security mechanisms.

Key Management Problem

Key Management Approaches Trusted server schemes Finding trusted servers is difficult Public key schemes Expensive and infeasible for sensors Key pre-distribution schemes
 sensor nodes prior to deployment

Naïve Solutions

Master-key approach Memory efficient @One node is compromised, the whole sensor networks will be compromised Needs Tamper-resistant hardware Pair-wise key approach Each sensor carry N-1 keys
 A Security is perfect Need a lot of memory

Eschenauer-Gligor Scheme

@Key pre-distribution

Each node randomly selects m keys from key pool

When |S| = 10,000, m=75
 Pr (two nodes have a common key) = 0.50

B

Key Pool

Key Sharing Graph

A

B

Secure Channels

mon

Modeling the Deployment Knowledge © Group-based deployment model © Normal distribution

$$f_k^{ij}(x,y|k \in G_{i,j}) = \frac{1}{2\pi\sigma^2} e^{-[(x-x_i)^2 + (y-y_j)^2]/2\sigma^2}$$

$$f_{overall}(x,y) = \sum_{i=1}^{t} \sum_{j=1}^{n} \frac{1}{t \cdot n} \cdot f_k(x,y|k \in G_{i,j}).$$

Deployment Distribution Overall distribution

x 10⁻⁶ 1.8 1.6 1.4 1.2 0.8 0.6 100 80 100 60 80 60 40 40 20 20 0 0

Node Deployment

(a) Deployment points (each dot represents a deployment point).

(b) Deployment distribution on the entire region using the deployment strategy modeled by (a).

Key Pre-distribution Scheme

Oividing the global key pool S into t*n key pools $S_{i,j}$, with $S_{i,j}$ corresponding to the deployment group G_{i,i} Setting up key pools Morizontally or vertically neighboring key
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 pools share $a|S_c|$ keys, where $0 \le a \le 0.25$ © Diagonally neighboring key pools share b|S keys, where $0 \leq b \leq 0.25$

Key Pre-distribution Scheme (cont.)

Key Pre-distribution Scheme (cont.)

Fig. 3. Key assignment for all the key pools

Determining |S_c|

$$|S_c| = \frac{|S|}{tn - (2tn - t - n)a - 2(tn - t - n + 1)b}$$

For instance, when |S|=100,000, t=n=10, a=0.167 and b=0.083, |S_c|=1770

Evaluation

Connectivity

P_{local} = the probability that two neighboring nodes can find a common key
 Communication overhead
 The neighboring nodes are not connected
 Resilience against node capture
 Fraction of communications compromised

Local Connectivity

Communication Overhead

Network Resilience

Conclusion

With deployment knowledge, the scheme improves the performance of key pre-distribution in sensor networks.
 Each node only needs to carry fewer keys while achieving the same level of connectivity

Reduce the memory usage

Network resilience