Design Issues for High-Performance Active Routers

T. Wolf and J. S. Turner, WU IEEE JSAC Mar. 2001

K. C. Shih, 2001/11/1

Outline

- Introduction
- System Organization
- Router Port Design
- Scaling Issues
- Benchmarking
- Commercial Products
- Conclusion

Introduction

Active and Programmable Networks

- Customizing routing, open signaling, fully programmable control plane, support new protocols without changes in the underlying hardware
- Competition among exiting and future ISPs may hinge on the speed at which one service provider can respond to new market demands over another

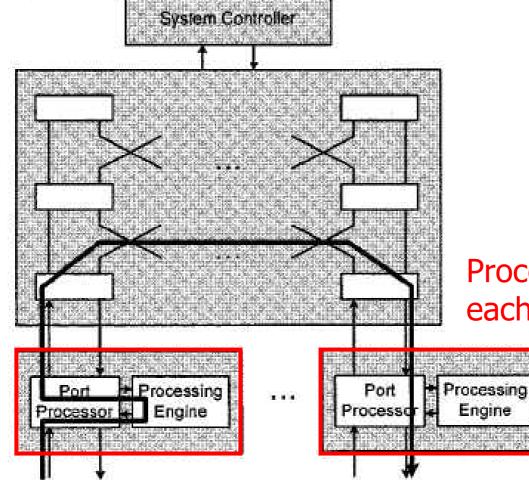
The problems are ...

- Inherently lower performance of software processing compared to hardwired logic
- Active networks implement more complex services than just plain forwarding
- Terabit routers with 10 Gbps links are commercially available now. Can active routers keep pace with the rapid growth?
- Moore's Law is losing
 - Transmission bandwidth has been growing faster than processing bandwidth

A single processor

	500 MIPS	1 GIPS
	processor	processor
150Mbps	25	50
link		
1.5 Gbps	12.5	25
link		Instr./byte

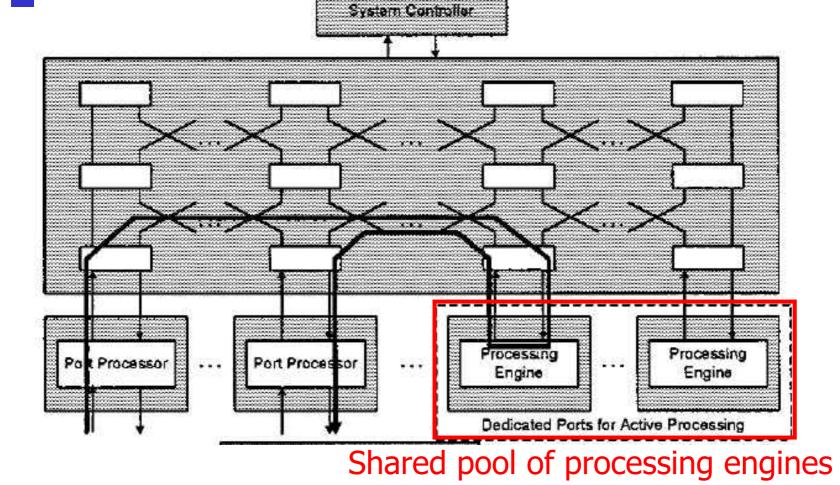
JPEG: 81 instr./byte



Focus on

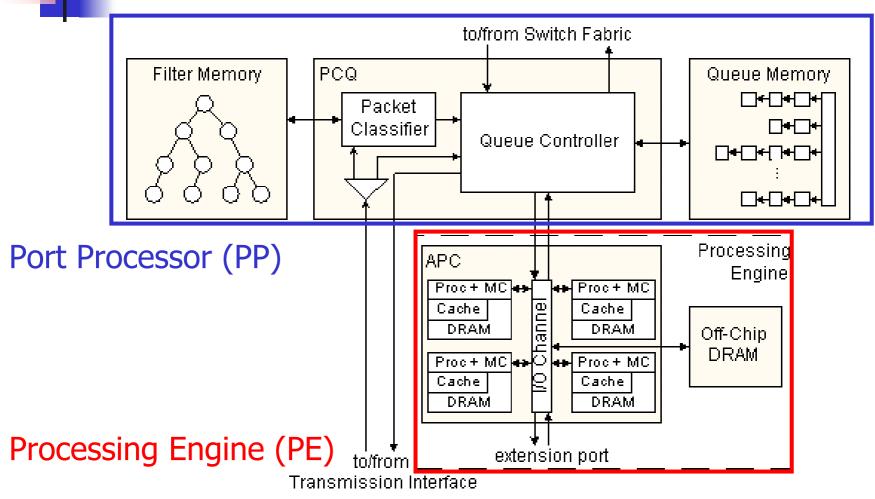
- 1. Multiple network processors on a single application specific integrated circuit (ASIC)
- Design a scalable hardware for processing packets at wire speeds of 2.4 Gbps and higher
- 3. Benchmarking

System Organization - 1



Processing engine at each router port

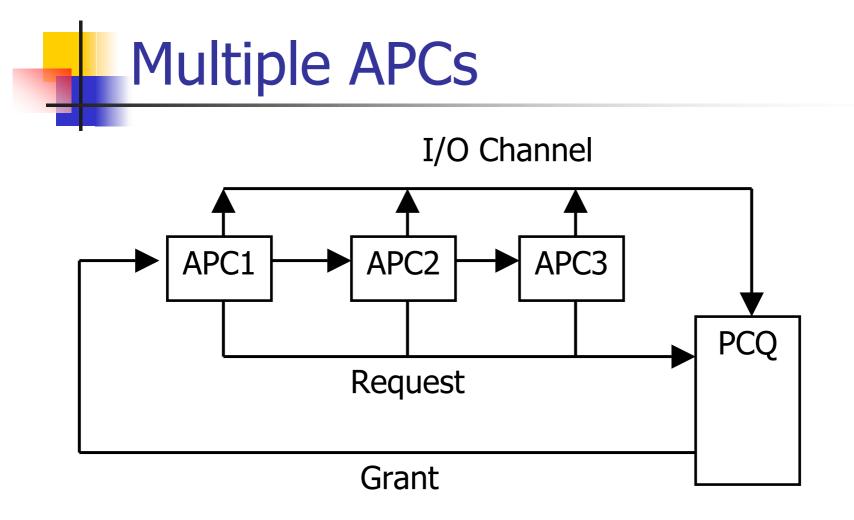
19


System Organization - 2

8

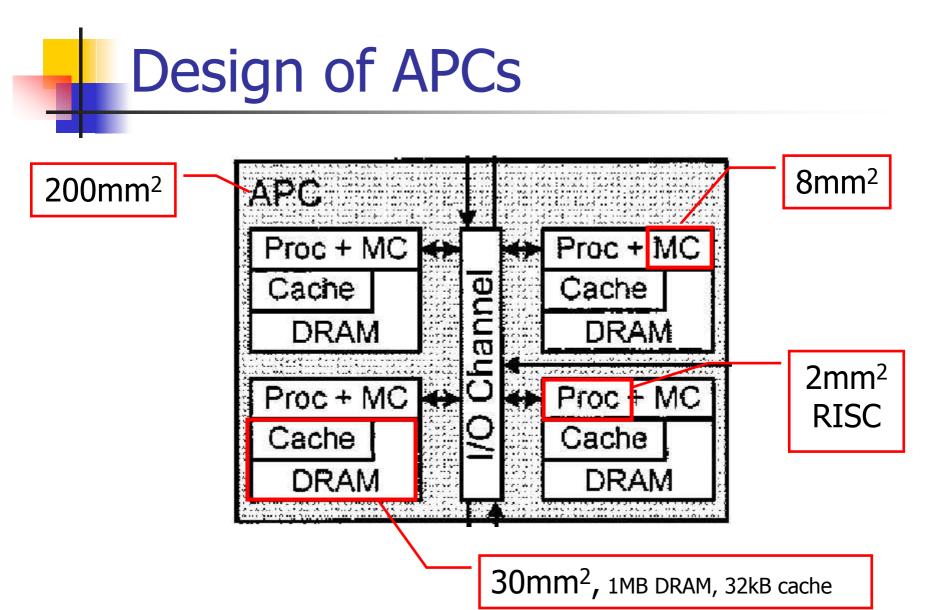
Router Port Design

Port Processor


- Packet classification and queuing (PCQ) chip
- The headers are passed to the packet classifier and the entire packet is passed to the queue controller (QCTL)
- The queues can be rate-controlled to provide QoS guarantees

Processing Engine

- Active processing is provided by one or more *active processor chips* (APC)
- Multiple APCs are arranged in a daisychain configuration to eliminate the need for multiple interfaces to the PCQ.


* Support priority naturally

Design of APCs

Using 0.25-um (deep submicron) CMOS technology

I/O Channel Bandwidth

- 32-bit interface in each direction at a clock rate of 250 MHz
 - → 8 Gbps
 - packet fragmentation effects
 - bus (I/O channel) contention
 - > 2.4 Gbps (links speed)

More other consideration...

- High-performance memory interface
- Size of embedded memory
 - Operating system kernel
 - Active application codes
 - Per flow state (few hundred flows)
 - Packets currently being processed
- Size of Queue Memory

Scaling Issues (1/2)

Technology scaling

APC TECHNOLOGY SCALING

Year	1999		2002		2005	0 Vinit ²	2008
Feature size (μm)	0.25	0.18	0.12	0.09	0.06	0.045	0.03
No. of APUs	4	4	8	8	16	16	32
Cache size (kB)	32	64	64	128	128	256	256
DRAM size (MB)	1	2	2	4	4	8	8
Proc + MC area (mm2)	10	5.2	2.3	1.3	0.6	0.3	0.14
SRAM area per MB	175	90	40	23	10	5.7	2.5
DRAM area per MB	25	13	5.8	3.2	1.4	0.8	0.4
Total APU area (mm ²)	162	148	131	137	122	132	117
Processor clock frequency (MHz)	400	556	833	1,111	1,667	2,222	3,333
External memory bandwidth (MB/s)	500	694	2,083	2,778	8,333	11,111	33,333
Instructions per byte for 2.4 Gb/s link	5.3	7.4	22	30	89	119	356

Scaling Issues (2/2)

- Multiple APCs
 - Each interface that connects to another APCs acts as a gateway and routes data to other APCs

Benchmarking

SIZE AND COMPUTATIONAL COMPLEXITY OF BENCHMARK APPLICATIONS

Application	Description	Object Code (bytes)	Executed Code (bytes)	Complexity (instr. / byte)
RTR	routing table lookup	16,000	15,220	2.1
DRR	packet scheduling	2,500	5,412	4.1
FRAG	packet fragmentation	2,400	5,032	7.7
TCP	traffic monitoring	352,000	29,028	10
JPEG	image compression	260,000	24,620	81
CAST	data encryption	19,500	10,116	104
ZIP	data compression	117,000	14,152	226
REED	forward error correction	6,900	6,040	603

Suggestions

- The large difference of code size (6 –30 kB) suggests that it may be necessary to specialize the different APUs
- For example, CAST, a single APC will be able to encrypt all the data on a 2.4 Gbps link only sometime after 2005 (16 APUs)

Commercial Products

 Programmable packet processing engines for routers

Intel IPX1200

 Six processing microengines (6 APUs), one control processor, 200-MHz clock rate, 2.6-Gbps line speed, 6.26-Gbps I/O bus, four threads per processor

Conclusion

- Active networking is an important new direction in networking research and potentially for commercial networks
- Active routers should keep pace with the link speed
- The paper proposed a fundamental design of active routers and related design issues.