Channel Quality Dependent Scheduling for Flexible Wireless Resource Management

Z. Jiang and N. K. Shankaranarayana AT&T Labs – Research ICC 2001

K. C. Shih, Multimedia Network Lab, NTHU

Introduction

- Network operators will have to decide on how to:
 - 1. optimize the performance of users with different channel qualities
 - 2. maintain a certain degree of fairness
 - 3. Preserve overall system performance

Motivation

- Two problems are not addressed in the pervious work:
 - 1. users may deliver different amounts of data using the same amount of radio resource
 - 2. the focus of the previous work has been on providing rate guarantees over sufficiently long time periods, which is not suitable for bursty data traffic

Overview of this paper

- First explore the intricate relations between channel quality, fairness, and performance
- Present a channel-efficiency-based scheduling algorithm to allocate resources with flexibility of adjusting

The system

- The discussions will be on EDGE (Enhanced Data Rates for GSM Evolution) with 400 kbps channels
- The traffic is generated based on an ON/OFF bursty model of web workloads, where the average file size is 8.2kB
- The link layer assumption is 8 time-slots in one 20msec time frame

The system (link adaptation)

MODULATION AND CODING SCHEMES IN EDGE.

Scheme	Modulation	Maximum rate [kb/s]	Data Per Slot [bits]
MCS-9	8PSK	59.2	1184
MCS-8		54.4	1088
MCS-7		44.8	896
MCS-6		29.6/27.2	592/544
MCS-5		22.4	448
MCS-4	GMSK	17.6	352
MCS-3		14.8 / 13.6	296/272
MCS-2		11.2	224
MCS-1		8.8	176

K. C. Shih, Multimedia Network Lab, NTHU

The impact of the differences in channel qualities

Average channel usage

Results

- The poor channel quality of MCS-6 users not only make themselves suffer, but also penalize the MCS-8 users.
- The performance degradation of MCS-8 users is in part due to the burstiness of the traffic. (equal weights)
- Both types of users complain to the operators

Options of scheduling algorithms

An efficiency-based scheduling algorithm (1/3)

The algorithm keeps track of how efficiently a mobile station is utilizing radio resources:

efficiency

 actual amount of data delivered / maximum amount of data that can be delivered with the same resource An efficiency-based scheduling algorithm (2/3)

Performance metric:

 $r_i = efficiency * R_i * r$

R is the amount of resource assigned, **r** is the best rate achievable

The proposed weight calculation: $Wi = efficiency_i^{exponent}$

 By adjusting the value of *exponent*, this algorithm can move its operating point along the axis shown before An efficiency-based scheduling algorithm (3/3)

At *exponent* = -1, the weight fo a mobile is proportional to the reverse of its *efficiency*, i.e., all the users should receive exactly the same rate

When exponent is greater than 0, the system assigns higher weights to good users hence improves the performance

Simulation (1/2)

Simulation (2/2)

Conclusion

- The paper illustrated how the situations in cellular systems, where users with different channel qualities may deliver different amounts of data using the same amount of resources
- And the proposed scheme can effectively adjust the resource assignments, which is an invaluable feature for service providers