Sensor Deployment and Target Localization Based on Virtual Forces Yi Zou , Krishnendu Chakrabarty IEEE INFOCOM 2003

Outline

Introduction
Virtual Force Algorithm
Target Localization
Simulation Result
Conclusion

Introduction(1/2)

Distributed sensor networks (DSNs) Are important for a number of strategic applications. Ex. Coordinated target detection, surveillance, and localization The effectiveness of the DSNs is determined to a large extent by the coverage provided by the sensor deployment.

Introduction(2/2)

Random deployment
 Is desirable, if no a priori knowledge of the terrain are available.
 overly clustered?
 How to improve the coverage?

Virtual Force Algorithm(1/10)

Main steps

- I. random deployment of sensors
- 2. cluster head execute the VFA to decides the new position of each sensor
- One-time movement is carried out to deploy the sensors at these positions

Virtual Force Algorithm(2/10)

Virtual force

- Attractive forces
 - The two sensor nodes are too far apart from each other
 - Preferential coverage
- Repulsive forces
 - The two sensor nodes are placed too close to each other
 - Obstacles

2003-10-01

 $\begin{aligned} & \text{Virtual Force} \\ & \text{Algorithm(2/9)} \\ & \text{W} \\ & F_i = \sum_{j=1, \, j \neq i}^k \sum_{ij}^{uv} \sum_{iR}^{uv} + F_{iR} + F_{iA} \end{aligned}$

UUW

 $\widetilde{F_{iA}}$ be the total (attractive) force on s_i due to preferential converage area

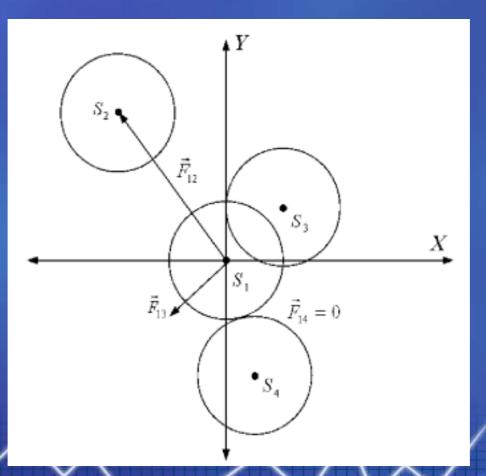
uuv

 $\overline{F_{iR}}$ be the total (repulsive) force on s_i due to obstacles

 F_{ij} be the force exerted on s_i by another sensor s_j

2003-10-01

Virtual Force Algorithm(3/9)


 $\begin{array}{c} \text{ Image of } F_{ij} = \begin{cases} (w_A(d_{ij} - d_{th}), \alpha_{ij}) & \text{if } d_{ij} > d_{th} \\ 0, & \text{if } d_{ij} = d_{th} \\ (w_R \frac{1}{d_{ij}}, \alpha_{ij} + \pi), & \text{if otherwise} \end{cases}$

d_{ij} is the Euclidean distance between sensor s_i and s_j,
 d_{th} is the threshold on the distance between s_i and s_j,
 α_{ij} is the orientation (angle) of a line segment form s_i to s_j and
 w_A(w_R) is a measure of the attractive (repulsive) force
 Some threshold distance d_{th} controls how close

sensors get to each other.

2003-10-01

Virtual Force Algorithm(4/9)

Ting-Kai Huang, MNet Lab

Virtual Force Algorithm(5/9)

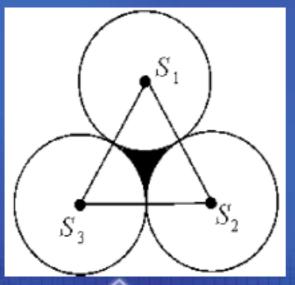
Binary sensor model
 the coverage c_{xy}(s_i) of an grid point P by sensor s_i

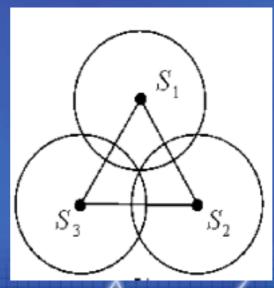
 $c_{xy}(s_i) = \begin{cases} 1, & \text{if } d(s_i, P) < r \\ 0, & \text{otherwise.} \end{cases}$

Ting-Kai Huang, MNet Lab

Virtual Force Algorithm(6/9)

Probabilistic sensor model


 $c_{xy}(s_i) = \begin{cases} 0, & \text{if } r + r_e \le d(s_i, P) \\ e^{-\alpha a^{\beta}}, & \text{if } r - r_e < d(s_i, P) < r + r_e \\ 1, & \text{if } r - r_e \ge d(s_i, P) \end{cases}$


 $r_e(r_e < r)$ is a measure of the uncertainty in sensor detection $a = d(s_i, P) - (r - r_e)$

2003-10-01

Virtual Force Algorithm(7/9)

If r_e ≈ 0 use the binary model, we attempt to make d_{ij} as close to 2r as possible
 Drawback

Ting-Kai Huang, MNet Lab

Virtual Force Algorithm(8/9)

• If $r_e > 0$, use the probabilistic sensor model $c_{x,y}(s_i, s_j) = 1 - (1 - c_{x,y}(s_i))(1 - c_{x,y}(s_j))$

 $c_{x,y}(S_{ov}) = 1 - \prod_{s_i \in s_{ov}} (1 - c_{x,y}(s_i))$

 $\min_{x,y} \{c_{x,y}(S_{ov})\} \ge c_{th}$

2003-10-01

Procedure *Virtual_Force_Algorithm* (Grid, { s_1 , s_2 , ..., s_k })

```
1 Set loops = 0;
2 Set MaxLoops =MAX_LOOPS;
3 While (loops < MaxLoops)
      /* coverage evaluation */
      For P(x, y) in Grid, x \in [1, width], y \in [1, height]
          For s_i \in \{s_1, s_2, \cdots, s_k\}
             Calculate c_{xy}(s_i, P) from the sensor model
             using (d(s_i, P), c_{th}, d_{th}, \alpha, \beta);
          End
8
9
          If coverage requirements are met
10
             Break from While loop;
11
          End
12
      End
13
      /* virtual forces among sensors */
       For s_i \in \{s_1, s_2, \cdots, s_k\}
14
          Calculate \vec{F}_{ii} using d(s_i, s_j), d_{th}, w_A, w_R;
15
         Calculate \vec{F}_{iA} using d(s_i, PA_1, \cdots, PA_{n_P}), d_{th};
16
         Calculate \vec{F}_{iR} using d(s_i, OA_1, \cdots, OA_{n_O}), d_{th};
17
         \vec{F}_i = \sum \vec{F}_{ij} + \vec{F}_{iR} + \vec{F}_{iA}, j \in [1, k], j \neq i;
18
19
      End
20
      /* move sensors virtually */
21
      For s_i \in \{s_1, s_2, \cdots, s_k\}
22
          F_i(s_i) virtually moves s_i to its next position;
23
      End
24
      Set loops = loops + 1;
25 End
```

Target Localization(1/6)

Two-step communication protocol
 yes/no message
 Detailed information
 ex. Detection strength, imagery
 Advantages
 Save power and bandwidth

Target Localization(2/6)

Detection probability table

Contains entries for all possible detection reports from those sensors that can detect a target at this gird point.

EXAMPLE PROBABILITY T	ABLE.
-----------------------	-------

i	$d_1 d_2 d_3$	$p_table_{xy}(i)$	i	$d_1 d_2 d_3$	$p_table_{xy}(i)$
0	000	0	1	001	0
2	010	0.18	3	011	0.24
4	100	0	5	101	0
6	110	0.24	7	111	0.33

2003-10-01

Target Localization(3/6)

Score-based Ranking

$$SCORE_{xy}(t) = p_table_{xy}(i(t)) \times w_{xy}(t)$$
$$w_{xy}(t) = \frac{k_{rep,xy}(t)}{k_{rep}(t)}$$

- k_{rep}(t) is the set of sensors that have reported the detection of an object
- k_{rep,xy}(t) is the set of sensors that can detect point P(x,y) and have also reported the detection of an object

2003-10-01

Target Localization(4/6)

• Selection of sensors to query $S_q(t): d(S_q(t), P_{MS}) = \min\{d(s_i, P_{MS})\}$

The sensors selected corresponding to he ones that have the shortest distance to those grid points with the highest scores

2003-10-01

Target Localization(5/6)

Evaluation of energy savings

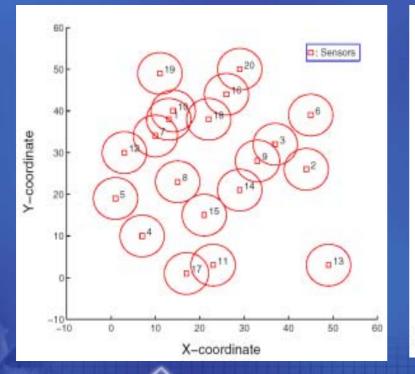
$$\begin{split} E_1^*(t) &= k_{rep}(t)(E_t + E_r)T_1 \\ E_2^*(t) &= (k_q(t)E_r + E_t)T_2 \\ E_3^*(t) &= k_q(t)(E_t + E_r)T_3 \\ E_4^*(t) &= E_sT_s \\ E(t)^* &= E_1(t)^* + E_2(t)^* + E_3(t)^* + E_4(t)^* \\ E^* &= \sum_{t=t_{start}}^{t_{end}} E(t)^* \\ E^* &= \sum_{t=t_{start}}^{t_{end}} E(t)^* \end{split}$$

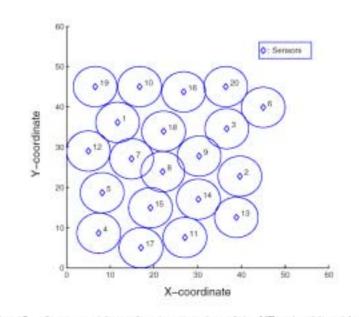
$$\begin{aligned} E_1^*(t) &= k_{rep}(t)(E_t + E_r)T_1 \\ E_2^*(t) &= (k_q(t)E_r + E_t)T_2 \\ E_3^*(t) &= k_q(t)(E_t + E_r)T_3 \\ E_3^*(t) &= k_q(t)(E_t + E_r)T_3 \\ E_3^*(t) &= E_sT_s \\ E(t)^* &= E_sT_s \\ E(t)^* &= E_1(t)^* + E_2(t)^* + E_4(t)^* \\ E^* &= \sum_{t=t_{start}}^{t_{end}} E(t)^* \\ \end{aligned}$$

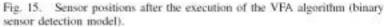
$$\Delta E = E - E^* = C \sum_{t=t_{start}}^{t_{end}} \left(k_{rep}(t) - k_q(t) \right)$$

Ting-Kai Huang, MNet Lab

Procedure

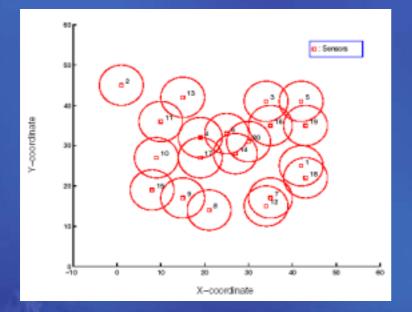

Localization (Grid, $\{s_1, s_2, \dots, s_k\}$, TargetTrace)

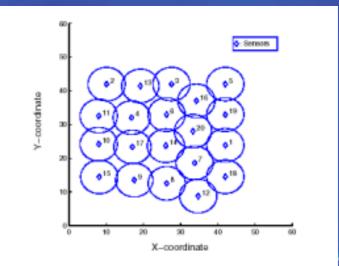

 $/* k_{max}$ is the maximum number of sensors that are allowed for querying, p_{rep} is the threshold level for a sensor to report to the cluster head of an event. TargetTrace starts from t_{start} and it ends at t_{end} . The simulation time unit is 1. */ 1 Set $t = t_{start}$; 2 While $(t \leq t_{end})$ /* current target location */ 3 4 5 6 7 8 Set Target = TargetTrace(t); /* calculate the scores */ Calculate $S_{rep}(t)$ from $\{s_1, s_2, \cdots, s_k\}$, $Target(t), p_{rep}$; Set $k_{rep}(t) = |S_{rep}(t)|$; For P(x, y) in Grid, $x \in [1, width], y \in [1, height]$ 9 Calculate $S_{rep,xy}(t)$ from $S_{rep}(t)$ and P(x,y); 10Calculate the index i(t) of p_table_{xy} from $S_{rep}(t)$ and $S_{rep,xy}(t)$; Set $k_{rep,xy}(t) = |S_{rep,xy}(t)|$; 11Set $w_{xy}(t) = \frac{k_{rep,xy}(t)}{k_{xy}(t)}$; 12 Set $SCORE_{xy}(t) = p_table_{xy}(i(t)) \times w_{xy}(t)$; 13 14 End /* select sensors for querying */ 15 Calculate $S_q(t)$ from $SCORE_{xy}(t)$ and k_{max} , 16 $x \in [1, width], y \in [1, height];$ /* next time instant */ 17 18Set t = t + 1; 19 End

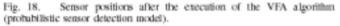

Fig. 13. Pseudocode of the localization algorithm.

Simulation Results(1/4)

Binary sensor detection model






2003-10-01

Simulation Results(2/4)

Probabilistic sensor detection model

2003-10-01

Simulation Results(3/4)

Sensor Field with a preferential area and on obstacle

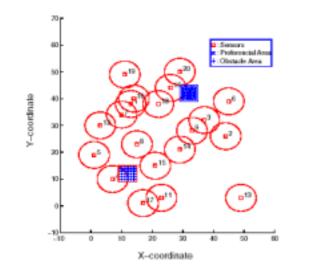


Fig. 20. Initial sensor positions after random placement with obstacles and preferred areas.

2003-10-01

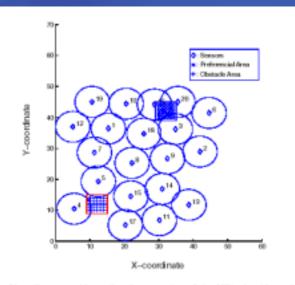


Fig. 21. Sensor positions after the execution of the VFA algorithm with obstacles and preferred areas.

Simulation Results(4/4)

Probability-based target Localization

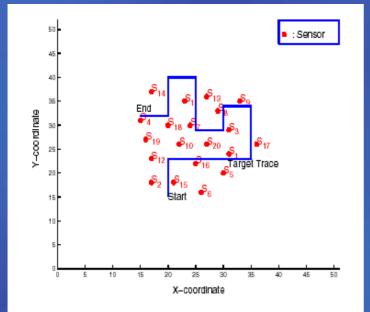


Fig. 23. Sensor field with sensors deployed by the VFA algorithm and target movement trace.

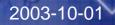
TABLE III SENSORS SELECTED FOR QUERYING BY THE CLUSTER HEAD.

t	$S_{rep(t)}$	$S_q(t)$	$\Delta E(t)$
01	s_2, s_6, s_{15}	s_2,s_{15}	C
02	$s_2, s_6, s_{12}, s_{15}, s_{16}$	s_2,s_{12}	3C
0.3	$s_2, s_6, s_{12}, s_{15}, s_{16}$	s_2,s_{12}	3C
04	$s_2, s_6, s_{12}, s_{15}, s_{16}$	s_2,s_{12}	3C
41	s_3, s_8, s_9, s_{13}	s_9, s_3	2C
42	$s_3, s_7, s_8, s_9, s_{11}, s_{13}$	s_9, s_3	4C
43	$s_3, s_7, s_8, s_9, s_{11}, s_{13}, s_{20}$	s_9, s_3	5C
44	$s_3, s_7, s_8, s_9, s_{11}, s_{13}, s_{20}$	s_9, s_3	5C
79	$s_4, s_7, s_{10}, s_{11}, s_{14}, s_{18}, s_{19}$	s_7,s_{11}	5C
80	$s_4, s_7, s_{10}, s_{11}, s_{14}, s_{18}, s_{19}$	s_7,s_{11}	5C
81	$s_4, s_{11}, s_{14}, s_{18}, s_{19}$	s_{11}, s_{18}	3C
82	$s_4, s_{14}, s_{18}, s_{19}$	s_{18},s_{14}	2C

2003-10-01

Conclusion(1/2)

Advantages


- Negligible computation time and a onetime repositioning of the sensors
- The desired sensor field coverage and model parameters can provided as input to the VFA algorithm

The localization algorithm can reduce the energy consumption for target detection and location

2003-10-01

Conclusion(2/2)

Future work
 Make route plan for repositioning the sensors
 Detect multiple objects
 Consider about sensors nodes failures
 Examine continuous coordination systems

