An Adaptive Multi-channel MAC protocol for Wireless Ad Hoc Networks Ting-Kai Huang

Outline

- Introduction
- Related works
- Proposed method
- Simulation results
- Conclusion
- References

Introduction

- The bandwidth of wireless networks is low
 - 802.11b: 1, 2, 5.5, and 11(Mbit/s)
 - 802.11a: 6, 9, 12, 18, 24, 36, 48, and 54(Mbit/s)
 - 802.11g: 1, 2, 5.5, 6, 9, 11, 12, 18, 22, 24, 33, 36, 48, and54(Mbit/s)
- 802.11x provides multiple channels for using
 - 802.11b: 14 available channels, 3 non-overlap channels
 - 802.11a: 12 available channels(8 channels for outdoor use , and 4 channel for indoor use)

Introduction

- The 802.11 standard provides multiple channels for use, but we use just only one channel at a time now.
- It is an effective way to increase the networks capacity.

Introduction

- Multi-channel MAC protocols can be divided into two parts:
 - Channel assignment
 - Medium access

- The Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) is not suitable for multichannel wireless networks.
- New Multi-channel hidden terminal problem

New multi-channel hidden terminal problem

Ting-Kai Huang, MNET Lab

- Previous works
 - Each host is equipped with multiple transceivers.(as much as the number of channels) [2]

- [3,4,5,6] divide the channels into two classes:
 - 1.Control channel

2.Data channels

 Each host is equipped with two transceivers, one for control channel and the other for data channels.

- [7, 8] take the hardware cost and energy consumption into consideration.
- Not only divide the channels into two classes but also spilt the time interval

- Each host is equipped with just one transceiver
- Fixed interval size limits the channel utilization

Proposed Method

- A. Channel Negotiation and Data Exchange
- B. Procedure of Channel selection
- C. Dynamic Interval Adjustment

Data Exchange

Channel status information

- Each host maintains one in-use channel and two channel list, Good channel list, and Bad channel list, to keep track of necessary information for channel selection.
- In-use channel: the channel that the host will use for data transmission in this time frame
- Good channel list: the channels that no other neighboring hosts are using.
- Bad channel list: the channels that are selected by host's neighbors.
 - counter

Procedure of Channel selection

2005-07-13

- The operations
 - 1. Making just one negotiation with per destination
 - 2. Increasing and decreasing the negotiation interval size
 - Maximum, minimum,
 - The size of increment is fixed
 - 3. Piggybacking of negotiation interval size

4. Packet marking

- The rules for adjusting Negotiation interval
- Increasing rules
 - 1.Based on the number of pending packets that the host could not negotiate with their destination successfully
 - 2. Overhearing the packets on the air
 - 3.Receiving the negotiation packet in data transmission
 - 4. Receiving the marked packets

- Based on the number of pending packets that the host could not negotiate with their destination successfully
 - If the sum of pending packets to each destination exceeds the threshold, the host increases the size of negotiation interval by one level.

- 2. Overhearing the packets on the air
 - Hosts increase the size of interval by one level if they find that the interval size of the overhearing packages is at least two levels larger than themselves.

3. Receiving the negotiation packet in data transmission interval

4. Receiving the marked packets

- Decreasing rule
 - If a host announces all the packets to the destinations, it sets it negotiation interval size to be minimum.

Simulation Models

- Aggregate throughput over all flows in the network
- Average packets delivery delay over all flows in the networks

Simulation Models

- All hosts are within each other's transmission range.
- In each case, half of the hosts are source hosts and the rest are destination, for the simulated flows
- Each flow transmits Constant Bit Rate (CBR) traffic
- The parameters we vary are:
 - numbers of hosts in the networks,
 - the networks load, and
 - the NTI interval size.

Simulation Models

Parameters	Values
Length of beacon interval	100ms
Number of channels	3
Bandwidth of channel	11Mbps
Packet size	512bytes
Max negotiation interval size	50 ms
Min negotiation interval size	5 ms
Slot time	0.1ms
Length of SIFS	0.01ms
Length of DIFS	0.05ms
Length of MRTS	20bytes
Length of MCTS	14bytes
Length of RRTS	14bytes

29

Conclusions

- A new MAC protocol that can exploit multiple channels effectively by only using one transceiver per host.
- Our protocol can adjust to different traffic load in order to maximize the channel utilization.

References

- 1. IEEE 802.11 Working Group, "Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications," 1997.
- 2. Nasipuri, A.; Zhuang, J.; Das, S.R."A *multichannel CSMA MAC protocol for multihop wireless networks*", Wireless Communications and Networking Conference, 1999. WCNC. 1999 IEEE 21-24 Sept. 1999 Page(s):1402 - 1406 vol.3
- 3. S.-L. Wu, C.-Y. Lin, Y.-U. Tseng, J.-P. Sheu, *"A New Multi-Channel MAC Protocol with On-Demand Channel Assignment for Multi-hop Mobile Ad Hoc Networks",* Int'l symposium on Parallel Architectures, Algorithms and Networks 2000
- 4. S.-L. Wu, Y.-U. Tseng, C.-Y. Lin, J.-P. Sheu, "A Multi-Channel MAC Protocol with Power Control for Multi-Hop Mobile Ad Hoc Networks", Distributed Computing Systems Workshop, 2001 International Conference on , 16-19 April 2001, pp.:419 424
- 5. W.-C. Hung, K.L.E. Law, A. Leon-Garcia, "A Dynamic Multi-Channel MAC for Ad Hoc LAN". Proc. 21st Biennial Symposium on Communications, 2002, pp 31-35
- 6. Jungmin So, Nitin Vaidya, "Multi-channel MAC for Ad Hoc Networks: Handling Multi-Channel Hidden Terminal Using A Single Transceiver", International Symposium on Mobile Ad Hoc Networking & Computing, ACM, 2004, pp222 – 233
- Jenhui Chen, Shiann-Tsong Sheu, Chin-An Yang, "A New Multichannel Access Protocol for IEEE 802.11 Ad Hoc Wireless LANs", Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003. 14th IEEE Proceedings on , Volume: 3 , 7-10 Sept. 2003 ,pp 2291 - 2296 vol.3.
- Xuejun Tian, Yuguang Fang, Ideguchi, T. "Multichannel time-spread scheduling: a new approach to handling heavy traffic loads in ad hoc networks", Wireless Communications and Networking Conference, 2004. WCNC. 2004 IEEE, Volume: 2, 21-25 March 2004, pp 1075 -1080 Vol.2

References

- 9. Tzamaloukas, A.; Garcia-Luna-Aceves, J.J. " A receiver-initiated collision-avoidance protocol for multi-channel networks" INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, Volume: 1, 22-26 April 2001 pp. 189 198 vol.1
- 10. Jain, N., Das, S.R., Nasipuri, A., " A multichannel CSMA MAC protocol with receiver-based channel selection for multihop wireless networks ", Computer Communications and Networks, 2001. Proceedings. Tenth International Conference on , 15-17 Oct. 2001 pp.432 439
- 11. Paramvir Bahl, Ranveer Chandra John Dunagan, "SSCH: Slotted Seeded Channel Hopping for Capacity Improvement in IEEE 802.11 Ad Hoc Wireless Networks ", International Conference on Mobile Computing and Networking, 2004 ACM, pp 216 230.
- 12. Tianbo Kuang, Carey Williamson, "A bidirectional multi-channel MAC protocol for improving TCP performance on multihop wireless ad hoc networks", International Workshop on Modeling Analysis and Simulation of Wireless and Mobile Systems, 2004 pp. 301- 310.
- 13. Andrea Baiocchi, Alfredo Todini, Andrea Valletta, "Why a multichannel protocol can boost IEEE 802.11 performance", International Workshop on Modeling Analysis and Simulation of Wireless and Mobile Systems 2004, pp143- 148.
- Yijun Li, Hongyi Wu, Perkins, D., Nian-Feng Tzeng; Bayoumi, M., MAC-SCC: medium access control with a separate control channel for multihop wireless networks" Distributed Computing Systems Workshops, 2003. Proceedings. 23rd International Conference on , 19-22 May 2003, pp. 764 – 769