Adapting Peer-to-Peer Topologies to Improve System Performance

Presented by Chi-Hung Chao

Outline

- Introduction
- Topology Evolution Algorithm
- Balancing Bias Algorithm
- Experiment
- Analysis and Observation
- Conclusion and Discussion

Introduction

- Improving the performance of unstructured Peer-to-Peer file sharing system.
- Controlling the routing protocol and network topology simultaneously.

Introduction

• Flooding based search algorithms are very sensitive to the number of edges in the network graph.

- Edge Thinning
 - Reducing the total number of links
- Diameter Folding
 - Adding some useful links

• Edge Thinning

- Reducing search cost by removing the most redundant links without disconnecting the graph.
- Assigning a "score" to each link within the network to determine how useful it was across all searches.

• Edge Thinning

Edge Scoring for a Query Candidate Edges for Removal (Possible cumulative scores 0-6) Query + . +1 1st Gen Worst 2nd Gen Scoring 5 5 +13rd Gen Edges 4 0 + 0 = 0

• Edge Thinning

- Late message
 - Redundant messages received at a later time.
- Even-length cycles also result in simultaneous redundant message delivery, but no late message are passed.
- Some bandwidth is used without any benefit to search in these odd-length cycles.

• Edge Thinning

 This calculation-removal cycle can be repeated until the graph becomes disconnected, at which point the last edge removed can be re-inserted.

• Diameter Folding

 After having created a way to remove the most redundant links, we began considering how and when we might add useful links.

• Diameter Folding

- By breadth-first search protocol, the worst-case time for a search to reach all other nodes is the same as the graph diameter.
- One way to add shortcut links between all nodepairs whose minimum path length is the diameter.

• Diameter Folding

- So we perform the Diameter Folding algorithm, and then perform thinning from the folded topology.
- But an edge would often be added that was immediately removed by the next thinning step because the folding step was creating an odd cycle within the graph.

• Diameter Folding

- Ensuring that the new cycle that is being created is always of even length
 - Folding operation selects a pair of nodes at the diameter and connects them directly if the diameter is odd.
 - If the diameter is even, connects one of them to a neighbor along the path.

• Diameter Folding

Greatest Odd-Length Paths for Folding

Diameter

- – Odd Diameter Fold
- Even Diameter Fold

Balancing Bias Algorithm

- To balance nodes degrees
- In thinning
 - Remove the poor scoring links between nodes with high degrees.
- In Folding
 - Add links between distant nodes with low degree.

Experiments

- Experiment 1
 - Fixed number of links.
- Experiment 2
 - Allowed the number of links to increase or decrease.

Experiment 1

		Target	Actual	Initial Degree			Degree statistics after 5000 steps of alternating thin and fold					
Graph	Size	Mean	Mean	Statistics			Without		With			
		Degree	Degree				Balancing Bias			Balancing Bias		
Nodes	Links	_	_	Min	Max	Std	Min	Max	Std	Min	Max	Std
32	66	5	4.1	1	8	2.0	2	17	4.4	2	8	1.4
64	178	6	5.6	1	10	2.1	3	33	7.6	2	9	1.7
128	455	7	7.1	2	15	2.8	3	54	9.7	4	15	2.0
256	1020	8	8.0	1	17	2.9	4	59	10.5	4	17	2.7
512	2371	9	9.3	1	20	3.1	5	37	5.6	6	21	2.3
NOTE: Random graphs generated by probabilistically deciding whether to include												
each possible link, with the probability determined by target mean degree. Here,												
the target degrees mimic a base two hypercube of the same size.												

Experiment 2

Initial Graph Topology		Degree	•	Path			Search		
initial Graph Topology	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max
Bandam Banulari dagrag 2	3	3.0	3	1	5.1	9	219	226.9	235
Random Regular: degree 3	1	3.0	5	1	4 .6	7	213	222.6	233
Random Regular: degree 7	7	7.0	7	1	2.7	4	594	634.5	666
Kandom Kegular, degree 7	1	3.0	7	1	4.2	7	210	22 1.9	232
Pandom Not	1	7.1	13	1	2.7	5	618	645.6	673
	1	3.0	13	1	3.8	7	218	225.9	233

Bandwidth Usage

32 nodes, 66 links				-			86.3 70.8 82.8
64 nodes, 178 links					3		239.3 237.7 237.6
128 nodes, 455 links			•		1		637.4 582.6 641.9
256 nodes, 1020 links							1465.3 1385.0 1499.8
512 nodes, 2371 links							3449.8 3531.9 3505.9
Average for all cases							100.0% 93.9% 100.0%
	0	2	5	50	75	100	
			nitial T Nithou Nith Ba	opolog t Balar alancin	gy ncing Bias ng Bias		

	32 nodes, 2.6 66 links 2.2 2.3
Search	64 nodes, 2.6 178 links 2.1 2.5
Time	128 nodes, 2.7 455 links 2.2 2.6
	256 nodes, 2.9 1020 links 2.4 2.8
	512 nodes, 3.0 2371 links 3.0
	Average for all cases 94.8%
	0 25 50 75 100
	Initial Topology
	Without Balancing Bias
	With Balancing Bias

Towned Downer

Maximum
Degree

Conclusions and Discussions

- These algorithm will lead to network performance improvements.
- But the algorithm need to be performed in a stable environment, and the bandwidth consumption of performing this algorithm maybe large.