
An Interest-based Architecture
for Peer-to-Peer Network System

Presented by Chi-Hong Chao

Outline

• Introduction
• Related Work
• System Architecture
• Simulation
• Conclusion

Introduction

• Peer-to-peer file sharing system.
– Centralized (Napster)
– Decentralized

• Unstructured (Gnutella)
– Flooding based

• Structured (CAN, Chord, Pastry)
– DHT (Distributed Hashing Table) based

Introduction

• Flooding based
– Trivial
– Not scalable

• DHT based
– Scalable
– Sensitive to node failure
– Hard to support keyword search.

Related Work

• Data replication
• Selective search
• Cluster
• Interest group

Related Work – Data Replication

• Data replication is a technique to improve
the effectiveness of flooding, because
sharing files are replicated among the
peer-to-peer network system so that the
flooding range is reduced.

• With these algorithms, the search scope
can be reduced, because of its explicit
control of placement of data items that can
be easily located.

Related Work – Selective Search

• Random walks
– forwards a query message to randomly

chosen k neighbors instead of sending out all
• Routing Indices

– Routing Indices (RIs) are used to guide the
queries toward where the queries are more
likely to be satisfied.

Related Work – Cluster
• Cluster is a simple and useful method to restrict

the flooding of query messages.
• The number of peers in a cluster is often limited

in order to restrict searching range. If the
number of peers in a cluster is too large, it is
divided into several clusters.

• Each cluster selects a cluster header by a
header selection algorithm. And the cluster
headers together can further be connected.
Hence the whole peer-to-peer network has a
hierarchical structure with this cluster strategy.

Related Work – Interest Group

• In [13], the locality embedded in human
interests effectively guides search queries.

• The set of peers satisfied with the same
guide rule should contain data items that
are similar.

• In [14], metadata are used to describe and
represent documents that nodes share
with others. Metadata can be simply
defined as data about data.

System Architecture
• Our proposed system is constructed as a group-

based architecture.
• The locality of user interests is the key on

grouping peers in the system.
• What a peer is interested in depends on both the

types of shared files and the interest profile,
which is explicitly configured by the users.

• Peers whose interests are similar form an
interest group and each group in this system is
an unstructured overlay.

System Architecture

• A peer with capable capacity on computation
and bandwidth is selected as the group leader.

• Group leaders maintain connection status of
peers in the group and handle the join process
of new peers.

• A backup leader is selected and synchronized
with the primary leader for robustness purpose.

• Group leader also plays an important role in the
searching process.

System Architecture

System Architecture - Interests

System Architecture - Interests
• All files shared by a peer are categorized into

most suitable categories automatically based on
the metadata in the files.

• A peer joins groups according to the number of
shared files in each category.

• A peer may join several groups, and the groups
in our proposed architecture are overlapped.

• Although the groups are always overlapped, all
the operations such as join, leave, search and
download are performed in different groups
simultaneously and independently.

System Architecture –
Group Leaders Selection

• A peer with capable capacity on computation
and bandwidth is selected as the group leader or
the backup leader.

• The criterion of scoring peer’s capacity is
defined by this equation:

CB: the Computation and Bandwidth score
CPU: is computational ability of a peer
MEM: is size of memory of a peer
BAND: is network bandwidth of a peer

721 ×+×+×= BANDMEMCPUCB

System Architecture –
Group Leaders Selection

• 1). P1 is the first peer joins the group, and P1 becomes
the group leader undoubtedly.

• 2). P2 is the second peer joins the group and gets the
CB value of group leader. After comparing the CB value
between leader and P2, the peer with highest CB score
becomes the group leader and the other one becomes
the backup leader.

• 3). Pi is the i-th peer joins the group and gets the CB
value of group leader and backup leader. After
comparing the CB value among group leader, backup
leader and Pi, the peer with highest CB score becomes
the group leader. The second becomes the backup
leader and the other one becomes the normal peer.

System Architecture –
Peers join and connection management

• Each peer has a unique identifier, usually its IP
address, and maintains two caches: a neighbor
cache (nCache) and a member cache (mCache).

• nCache contains a list of neighboring peers in
each group it joins, while mCache contains
partial list of the peers in each group it joins.

• Rendezvous Point (RP) is employed in the
bootstrapping process of new peer in the
interest group peer-to-peer network system.

• RP records all the information of interest groups,
such as the IP address of the group leaders and
the descriptions of the groups.

System Architecture –
Peers join and connection management

• While a new peer Pi is to join the interest
group peer-to-peer network system, it first
sends a query message to RP to obtain a
list of group leaders.

• Suppose that Pi is interested in group j,
and Lj being the group leader of group j.
The join procedure is as follows:

System Architecture –
Peers join and connection management

• 1). Pi first sends a query message to RP to get the
Group_Leader_List that contains IP addresses of
group leaders in this system.

• 2). Pi sends joining messages to the group leader (Lj) of
groups that Pi wants to join. If group j that Pi wants
to join has no member, Pi becomes the group leader
of group j and jump to step 5.

• 3). Lj randomly selects some deputy nodes from its
nCache and redirects Pi to these deputies.

• 4). Pi gets lists of neighbor candidates from these
deputies’ mCache, and selects some of them as
its neighbors to establish connections.

• 5). End of joining procedure.

System Architecture –
Peers join and connection management

• To accommodate overlay dynamics, each peer in a
group periodically floods an alive message to announce
its existence.

• When a peer receives an alive message which is not
sent by its direct neighbors, it will update the information
in its mCache.

• If a peer finds that any of its neighbors doesn’t send the
alive message after a period, it removes that neighbor
from its nCache and tries to find a new neighbor from its
mCache.

• nCache always keeps alive peers as neighbors, while
mCache only caches peers that refresh their existence
recently and providing a second chances for a peer to
find other peers in the network.

System Architecture –
Peers Disconnect and Recovery

• Regular Departure
– normal peer

It sends a DEPARTURE message to all connected peers. On
receiving a DEPARTURE message, the neighbors update their
nCache and choose a new neighbor from its mCache.

– group leader
It notifies the backup leader to be the new leader of this group
and then floods the DEPARTURE messages in the group it
belongs to and sends the DEPARTURE message to the other
leaders in the system. On receiving the DEPARTURE message
of group leader, a peer will re-connect with the new group leader.
A new backup leader is then selected among capable peers in
this group. Finally the new leader contacts the RP for registering
new primary and backup leader.

System Architecture –
Peers Disconnect and Recovery

• Failure
– When a normal peer fails due to system crash or network

disconnection, the failure can be easily recovered by nCache
and mCacheIf. The first peer that discovers the failure will issue
a failure message which contains the identifier of failed peer, so
that all the peers among the group can update its mCache and
nCache for the failed peer.

– However, on noticing the failure of the group leader, any peer,
regardless of normal peer or leader, will notify RP to recover the
failure. RP will inform the backup leader of the failed group and
all other group leaders in the system re-connect to the new
leader. Properly, the process of secondary leader selection must
be performed again.

System Architecture –
Searching and Download Scheduling

• Searching
– Before sending a query message, a peer must

choose target group that is what the peer wants to
send query messages to.

– If the querying peer is the member of the target group,
it may just flood the query message in the group. In
another case, if the peer is not the member of the
target group, the peer can’t send the query message
to that group directly. So it may send the query
message to its group leader, and the group leader will
send the query message to the group leader of target
group, so that the query message can be flooded in
the target group.

System Architecture –
Searching and Download Scheduling

• Multiple Interests searching
– Suppose a peer Pi sends a query message M(q,

a∪b∩c) where q is the keyword of this query and Ga,
Gb, Gc are groups interests corresponding to
interests a, b, and c.

– The procedure of search is as follows:
1). Pi issues a query message M(q, a∪b∩c)
2). M is routed to Ga, Gb, Gc and return the

corresponding search result Ra, Rb and Rc.
3). Pi gets the search result R=Ra∪Rb∩Rc.

System Architecture –
Searching and Download Scheduling

• Download scheduling algorithm
– each file is divided into segments.
– In this algorithm, it first gets the number of source peers that

offer the file we need after sending a query message. Then it has
to perform an extended search mechanism, which is extending
the source peers by asking each of the source peers what peers
are also downloading this file currently.

– Since a segment with less supplying peer may cause a
download fail in the dynamic and heterogeneous network, the
download algorithm it performs is downloading the rare
segments first. Then, among the source peers, the uploading
bandwidth of the source peers is also concerned; the one with
rare segments and the highest uploading bandwidth is selected
first.

De
fin

iti
on

:
so

ur
ce

_s
et:

th
e p

ee
r s

et
of

 se
ar

ch
 re

su
lt;

ex
_s

ou
rc

e_
se

t:
th

e r
es

ul
t o

f e
xt

en
de

d
se

ar
ch

;
ba

nd
(j)

:
up

lo
ad

in
g

ba
nd

wi
dt

h
of

 p
ee

r j
;

ex
pe

cte
d_

se
t:

se
t o

f s
eg

m
en

ts
to

 b
e f

etc
h;

nu
m_

so
ur

ce
:

nu
m

be
r o

f m
ul

tip
le

so
ur

ce
s;

se
g_

siz
e:

se
gm

en
t s

ize
;

fil
e_

siz
e:

do
wn

lo
ad

in
g

fil
e s

ize
;

po
pu

la
rit

y[
i]:

nu
m

be
ro

f s
up

pl
yi

ng
 p

ee
r o

f s
eg

m
en

t i
Al

go
rit

hm
:

nu
m_

so
ur

ce
=

(fi
le_

siz
e)

 /
(8

*s
eg

_s
ize

);
Fo

r(
 se

gm
en

t i
wi

th
in

 ex
pe

cte
d_

se
t)

Fo
r(

 p
ee

r j
wi

th
in

 so
ur

ce
_s

et∪
ex

_s
ou

rc
e_

se
t)

If(
 pe

er
 j

ha
s s

eg
m

en
t i

)
po

pu
la

rit
y[

i]+
+;

En
d

Fo
r j

En
d

Fo
r i

Fo
r(

 n
=1

 to
 nu

m_
so

ur
ce

)
x=

 se
lec

t_
lo

we
st_

po
pu

la
rit

y_
se

g(
 p

op
ul

ar
ity

[i]
);

Fo
r(

 p
ee

r j
wi

th
in

 so
ur

ce
_s

e t∪
ex

_s
ou

rc
e_

se
t)

If(
 pe

er
 j

ha
s s

eg
m

en
t x

)
If(

 b
an

d(
j)>

 su
pp

lie
r[

x]
)

su
pp

lie
r[

x]
=j

;
En

d
Fo

r j
En

d
Fo

r n
O

ut
pu

t:
Su

pp
lie

r[
x]

:
su

pp
lie

r p
ee

r o
f s

eg
m

en
t x

;

De
fin

iti
on

:
so

ur
ce

_s
et:

th
e p

ee
r s

et
of

 se
ar

ch
 re

su
lt;

ex
_s

ou
rc

e_
se

t:
th

e r
es

ul
t o

f e
xt

en
de

d
se

ar
ch

;
ba

nd
(j)

:
up

lo
ad

in
g

ba
nd

wi
dt

h
of

 p
ee

r j
;

ex
pe

cte
d_

se
t:

se
t o

f s
eg

m
en

ts
to

 b
e f

etc
h;

nu
m_

so
ur

ce
:

nu
m

be
r o

f m
ul

tip
le

so
ur

ce
s;

se
g_

siz
e:

se
gm

en
t s

ize
;

fil
e_

siz
e:

do
wn

lo
ad

in
g

fil
e s

ize
;

po
pu

la
rit

y[
i]:

nu
m

be
ro

f s
up

pl
yi

ng
 p

ee
r o

f s
eg

m
en

t i
Al

go
rit

hm
:

nu
m_

so
ur

ce
=

(fi
le_

siz
e)

 /
(8

*s
eg

_s
ize

);
Fo

r(
 se

gm
en

t i
wi

th
in

 ex
pe

cte
d_

se
t)

Fo
r(

 p
ee

r j
wi

th
in

 so
ur

ce
_s

et∪
ex

_s
ou

rc
e_

se
t)

If(
 pe

er
 j

ha
s s

eg
m

en
t i

)
po

pu
la

rit
y[

i]+
+;

En
d

Fo
r j

En
d

Fo
r i

Fo
r(

 n
=1

 to
 nu

m_
so

ur
ce

)
x=

 se
lec

t_
lo

we
st_

po
pu

la
rit

y_
se

g(
 p

op
ul

ar
ity

[i]
);

Fo
r(

 p
ee

r j
wi

th
in

 so
ur

ce
_s

e t∪
ex

_s
ou

rc
e_

se
t)

If(
 pe

er
 j

ha
s s

eg
m

en
t x

)
If(

 b
an

d(
j)>

 su
pp

lie
r[

x]
)

su
pp

lie
r[

x]
=j

;
En

d
Fo

r j
En

d
Fo

r n
O

ut
pu

t:
Su

pp
lie

r[
x]

:
su

pp
lie

r p
ee

r o
f s

eg
m

en
t x

;

System Architecture –
Load Balancing

• Ranking
– Each peer has to record the requests sent by

it and the responses of the other peers.
According to these records, we can calculate
the hit ratio of the other peers. We define
RANKING(X) as the hit ratio of peer X.

– After a peer joining a group, we perform the
ranking mechanism in that peer. After a
period of time, that peer will get a list of peers
sorted by the hit ratio.

System Architecture –
Load Balancing

• Group Divider
– If a group leader detects that the loading of

the group is excessively high (too many
members), it will determine that this is an
overdeveloped group.

– The group leader will notice the secondary
leader to become the group leader of
subgroup and some of the group members
will connect to the subgroup.

System Architecture –
Load Balancing

• Data Replication
1). Pi receives a request Rj and floods it out.
2). If Rj has been requested over 10 times

in 60s, Pi will send a request the same
with Rj to download these popular files
and clear this request from the
request_record data structure.

3). If Rj has not been requested over 10
times in 60s, Pi will just record Rj.

Simulation

• Where
ISR: Interest Search Ratio
M _group: Messages sent in groups the

peer belongs to
M_all: All the messages sent

allM
groupMISR
_

_
=

Simulation

30 - 60 ms20 - 50 msLatency

3 - 6Neighbors

50noneGroup size

2000System size

Interest groupClusteredUnstructuredparameters

Simulation

Simulation

Conclusion

• Considering the real circumstance in the
peer-to-peer network system, most users
search files what they are interest in at the
peer-to-peer network system.

• The average latency and average number
of messages are reduced in our proposed
architecture while the interest search ratio
is higher.

Reference
• [1] Napster Inc. The Napster homepage. In http://www.napster.com/, 2001
• [2] Open Source Community. Gnutella. In http://gnutella.wego.com/, 2001
• [3] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. “Chord: A

Scalable Peer-to-Peer Lookup Service for Internet Applications.” In Proceedings of
SIGCOMM’2001, 2001

• [4] Hu. T.H.-t, Sereviratne A. General clusters in peer-to-peer networks. In
Networks, 2003. ICON2003. The 11th IEEE International Conference on 28 Sept.-
1 Oct. 2003 Page(s):277 - 282.

• [5] Crespo A., Garcia-Molina H., “Routing Indices for peer-to-peer systems.”
Distributed Computing Systems 2002

• [6] Portmann M., Sookavatana P., Ardone S., Seneviratne A., “The cost of peer
discovery and searching in the Gnutella peer-to-peer file sharing protocol.”
Networks, 2001. Proceedings. Ninth IEEE International Conference on , 10-12 Oct.
2001

• [7] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A Scalable
Content-Addressable Network. In proceedings of ACM SIGCOMM, August 2001.

• [8] A. Rowstron and P.Druschel. Pastry: Scalable, Distributed Object Location and
Routing for Large-Scale Peer-to-peer Systems. In Proceedings of
ACM/IFIP/USENIX Middleware, November 2001.

Reference
• [9] B. Y. Zhao, J. D. Kubiatowicz, and A.D. Joseph. Tapestry: An Infrastructure for Fault-

Resilient wide-Area Location and Routing. Technical Report UCB//CSD-01-1141, U. C.
Berkeley, April 2001.

• [10] P. Reynolds and A. Vahdat. Efficient Peer-to-Peer Keyword Searching. In Proceedings of
ACM/IFIP/USENIX Middleware, June 2003.

• [11] E. Cohen and S. Shenker. Replication Strategies in Unstructured Peer-to-Peer Networks.
In Proceedings of ACM SIGCOMM, August 2002.

• [12] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and Replication in Unstructured
Peer-to-Peer Networks. In proceedings of ACM ICS, June 2002.

• [13] E. Cohen, A. Fiat, and H. Kaplan. Associative Search in Peer-to-Peer Networks:
Harnessing Latent Semantics. In Proceedings of IEEE INFOCOM, April 2003.

• [14] J. Yang, Y. Zhong, S. Zhang. An Efficient Interest-Group Based Search Mechanism in
Unstructured Peer-to-Peer Networks. In Proceedings of the 2003 International Conference on
Conputer Networks and Mobile Computing.

• [15] M. Hefeeda, A. Habib. B. Botev, D. Xu, B. Bhargava, “PROMISE: Peer-to-Peer Media
Streaming Using CollectCast”, MM’03, November 2-8, 2003, Berkeley, California, USA.

• [16] Kobayashi, H.; Takizawa, H.; Inaba, T.; Takizawa, Y.; A self-organizing overlay network to
exploit the locality of interests for effective resource discovery in P2P systems. In Applications
and the Internet, 2005. Proceedings. The 2005 Symposium on 31 Jan.-4 Feb. 2005
Page(s):246 – 255

• [17] Rongmei Zhang and Y. Charlie Hu. Assisted Peer-to-Peer Search with Partial Indexing. In
Proceedings of IEEE INFOCOM 2005, Miami, FL, March 13-17, 2005.

