
1

YAPPERS :A Peer-to-Peer
Lookup Service over
Arbitrary Topology

IEEE INFOCOM 2003

謝志峰

2003/5/29

2

Outline
Introduction
YAPPERS
The Immediate Neighborhood
The Extended Neighborhood
Maintaining Topology
Enhancements
Evaluation
Conclusions

3

Introduction(1/4)
There are two classes of solutions currently proposed
for decentralized peer-to-peer content location:

Gnutella : It is relies on flooding queries to all
peers.Peers organize into an overlay. To find content, a
peer sends a query to its neighbors on the overlay.The
neighbors forward the query on to all of their neighbors
until the query has traveled a certain radius.

Distributed Hash Table(DHT):Peers organize into a well-
defined structure that is used for routing queries.

4

Introduction (2/4)

YAPPERS(Yet Another Peer-to-Peer System)
Four main design goals in designing our lookup service are:

1) impose no constraints on topology.
2) optimize for partial lookups where there are many values
for a key and clients are satisfied by a small subset of the values.
3) contact only nodes that can contribute to the search result
rather than flooding blindly.
4) minimize the effect of topology changes so that the
maintenance overhead is independent of the overlay size.

5

Introduction (3/4)
We assume the following model for each of the peer nodes:

When a node is created, there is a third-party network layer that
determines a set of live nodes as its new neighbors in the overlay.
Each node “owns” a (possibly empty) set of key, value pairs. When
the node joins the network, it registers these pairs with the lookup
service. The node may choose to register additional pairs with the
service, or delete some registered pairs at any point in time.
A node may initiate either partial-lookup or total-lookup queries at
any point in time.
When a node leaves the system, the key, value pairs that it “owns”
do not need to be preserved in the system.
A node may establish connections to other nodes directly, even if
they are not neighbors in the overlay network.

6

Introduction (4/4)
With these assumptions, let S be the set of key, value pairs
registered with the lookup service. We define:

TotalLookup(N, k) as the set of values returned by the service
for a total-lookup query on key k originating at node N.
PartialLookup(N, k, n) as the set of n values returned by the
service for a partial-lookup query on key k originating at node N.
If the total number of values for k is less than n, the partial
lookup is defined to be equivalent to the total lookup.
V alues(k) = {v|k, v S}

Then the lookup service is correct if and only if:
1) TotalLookup(N, k) = V alues(k) for all nodes N and keys k.
2) PartialLookup(N, k, n) V alues(k) and |PartialLookup(N, k,
n)| ≥ min(n, |V alues(k)|) for all nodes N, keys k and integers n.

7

YAPPERS (1/3)
The keyspace of all the keys that need to be stored is
partitioned into a small number of buckets.
For ease of exposition, consider an example where the
keyspace is divided into two buckets.
Let us say that keys are either white or gray. Every node in
the network is also assigned a color, white or gray, based on
some criterion.
A query for a gray key needs to be forwarded only to gray
nodes in the network, and a query for a white key only to
the white nodes.

8

YAPPERS (2/3)
To guarantee that gray queries end up being forwarded to all the gray
nodes, we require that each node knows all nodes within 3 hops of it,
and forwards a gray query to all the gray nodes it knows about in this 3-
hop radius.
More generally, if we permit a node to store a key, value pair at an
appropriately-colored node within h hops of it , it is sufficient for a
node to know all its neighbors within (2h + 1) hops in order to
guarantee that we can exhaustively hop through all the gray nodes
without touching any white node.
We call the nodes within h hops the immediate neighborhood of a
node, and the nodes within 2h + 1 hops the extended neighborhood of
the node.

9

YAPPERS (3/3)
YAPPERS divides a large overlay network into many small and
overlapping neighborhoods (the immediate neighborhoods).

The data within each neighborhood is partitioned among the neighbors
like a distributed hash table.

When a lookup occurs and the neighborhood cannot satisfy the request,
YAPPERS intelligently forwards the request to nearby neighborhoods,
or the entire network if necessary.

These forwardings require each node to know a larger set of nodes (the
extended neighborhood) that covers its neighbors’ neighbors.

10

The Immediate Neighborhood (1/3)
The immediate neighborhood of a node A, denoted by IN(A), is the set of nodes
where A may store its key, value pairs.
Moreover, the solution must strive to maintain the following two useful
characteristics:

Consistency: If a node X is in two different neighborhoods IN(A) and IN(B), both A
and B assign the same color to node X.
Stability: If a node X is in IN(A), then X is assigned the same color regardless how
IN(A) changes dynamically when nodes enter or leave the system.

Both characteristics are desirable because they improve the overall system
efficiency.
Consistency avoids costly synchronizations among nearby nodes to determine
which nodes have which colors.
Stability reduces data relocation when the underlying overlay network changes.

11

The Immediate Neighborhood (2/3)
Given a node A, which nodes should be included in IN(A)?
IN(A) = {v | G(v,A) h} where G returns the minimum distance between
two nodes in G. In other words, IN(A) contains all nodes within h hops
of A in the overlay network, including node A itself.
Specifically, our YAPPERS implementation uses h = 2.
We chose a small immediate neighborhood in order to provide long-
term stability to the system.
If the immediate neighborhood is large, then frequent node arrivals and
departures within the network will incur large overheads in maintaining
an accurate view of the immediate neighborhood and reduce the
efficiency of searches when the view is incorrect.

12

The Immediate Neighborhood (3/3)
Given IN(A), how do we partition the key space into multiple colors and
assign each color to nodes in IN(A)?
a node X with IP address IPX is assigned key k if HASH(k) ≡
(HASH(IPX) mod b) where b is the number of distinct hash buckets we
use.

In other words, the keyspace is divided into b hash buckets, or b
different colors C0, C1, . . . , Cb-1.
We say that a key k is of color C (or hashes to color C) if the hash
function assigns k to bucket C. If a node IP address hashes to bucket C,
we say the node is of color C.

13

The Extended Neighborhood (1/6)

Flooding the overlay network like Gnutella is a solution.
However,such flooding disturbs many nodes that do
not actually have any answers for the search.
To avoid these disturbance, a node A keeps track of a
bigger neighborhood than its immediate neighborhood
so that it can make bigger “jump” and avoid flooding its
direct neighbors.

14

The Extended Neighborhood (2/6)

we first define the frontier of node A, denoted by F(A), as all nodes
that are not in IN(A) but are directly connected to a node in IN(A).
Formally, if N(v) is the set of nodes directly connected to node v, then

With the frontier, the extended neighborhood EN(A) is then simply
the union of the immediate neighborhoods of all nodes in the frontier
of A. Formally,

() ()
()AIN

AINNAF
∈

−=
υ

υ)(

() ()
()AF

INAEN
∈

=
υ

υ

15

The Extended Neighborhood (3/6)

In this figure, h = 2.
So nodes B and C are in IN(A).
Nodes D and E are in the F(A) because they are connected to B and C
respectively.
Therefore, EN(A) includes H (part of IN(D)) and J (part of IN(E)).

16

The Extended Neighborhood (4/6)

Theorem 1: (Completeness) For any two nodes A and B of color C,
there exists a sequence of nodes A = Z0, Z1, Z2, . . . , Zw-1, Zw = B
such that for all i < w, Zi has color C and Zi forwards the request to
Zi+1 when executing the forward routine.
Assuming two black nodes A and B are the closest nodes that cannot
reach each other and is at least h + 1 hops away, we can construct
another pair Z and B where Z is even closer to B and cannot reach B.
hops while not knowing about each other.

17

The Extended Neighborhood (5/6)

Now consider the shortest overlay network path p0, p1, . . . , ps from A to B
where p0 = A and ps = B. There are two cases: s ≥ h + 1 and s < h + 1. We
show that both cases lead to contradictions, hence prove our claim.
Case 1: s ≥ h + 1.
Now consider δ(Z,B), the distance between Z and B.
By the triangle inequality, δ(Z,B) ≤ δ(Z, F(A)) + δ(F(A),B).
By construction, we know δ(Z, F(A)) ≤ h and δ(F(A),B) =s-h-1.
Therefore, δ(Z,B) ≤ h+s-h-1 = s-1, which means Z is closer to B than A and is
a contradiction to our choice that A and B are the closest pair of black nodes
that do not satisfy our claim. Hence, the case s ≥ h + 1 cannot happen.

18

The Extended Neighborhood (6/6)

Case 2: s < h+1.
Let t = δ(A,X), the distance between A and X.
If t ≤ h + 1, then X ∈ IN(A) ∪ F(A) and node A would have learned that node
B is also black when determining where X stores black keys.
For the same reason as t > h + 1, (Z1,X) > h + 1.
However, δ(Z1,X) ≤ δ(Z1, F(A))+ δ(F(A),X) ≤ h+ (t - h - 1) = t -1 < t =
δ(A,X).
Therefore if we repeat the step above (with A replaced by Z1), we can find Z2
such that Z1 forwards the request to Z2 and δ(Z2,X) ≤ t - 2.
Since each step brings us at least one node closer to X, eventually, in a finite
number of steps i ≤ t - h - 1, we get δ(Zi,X) ≤ h+1.
When this happens, X ∈ IN(Zi) ∪ F(Zi) which means node Zi can infer node
B is a black node and forward B the lookup request.

19

Maintaining Topology (1/2)

Edge Deletion: YAPPERS uses a 2h+1 hops extended neighborhood, an
edge deletion requires both X and Y to broadcast the deletion event to its
surviving neighbors with a time-to-live field of 2h hops.
Edge Insertion:The solution is to do the same thing as edge deletion but
append both X’s and Y ’s new extended neighborhood information in the
broadcast.

X Y

Z

W

2h

2h-1

2h-2

20

Maintaining Topology (2/2)

Node Departure and Arrival:
As node X appears on the network, it first asks its new neighbors
for their current views of the topology.
Node X then merges these views to create its own extended
neighborhood.
Afterwards, node X initiates an edge insertion broadcast to each
of its new neighbors appended with the appropriately trimmed
subset of the new topology.

21

Enhancements (1/3)

We noticed two problems: the fringe node problem and
the large fan-out problem.
In the fringe node problem, a low connectivity node,
through the use of backup assignment, allocates a large
number of secondary colors to its high-connectivity
neighbor which has no desire for the extra colors.
One obvious solution to the fringe node problem is to
prune away low connectivity nodes.

22

Enhancements (2/3)

the large fan-out problem:
When a node A does the forwarding, each of A’s frontier
nodes may point to one or more different forwarding
nodes.
Consequently, the forwarding fan-out degree at node A is
proportional to the number of the frontier nodes.

23

Enhancements (3/3)

the large fan-out problem:
When node A forwards a lookup request for color C,

1) If a frontier node F assigns C to node B via the backup mechanism,
then forward the request to B.
2) If a frontier node F assigns C to a set of nodes S, do not forward to
any nodes in S if SIN(A) = . Otherwise, only forward to one of the nodes
in S.
3) In step (2), when choosing one node from S, try to pick common
nodes between multiple frontier nodes.

Step (1) is necessary because the only way of reaching a backup node
B could be through the frontier node F.
If no backups are necessary, then steps (2) and (3) try to avoid
forwarding to far-away nodes if a closer one exists.

24

Evaluation (1/7)

To estimate statistics on YAPPERS running over a real overlay
network, we simulated YAPPERS on a snapshot of the Gnutella
network [15] containing 24, 702 connected nodes and several
synthetically-generated regular graphs.

With our implementation, we examine the search efficiency with
respect to the expected fraction of nodes contacted per query, the
search overhead in terms of the fan-out degree for forwarding search
messages, and the optimal b (number of hash buckets) to use.

25

Evaluation (2/7)

The efficiency of executing a total-lookup request is captured in the
expected fraction of nodes contacted, denoted by , during the
search. This fraction is equal to , where

is the average number of colors assigned to each node and b is the
number of hash buckets (colors) used.
To see this, notice that because is the total
number of colors in the system, counts the number of nodes
having a particular color, and hence also counts the
number of colors in the system.

F
F C

b
C

() bFNCN ⋅⋅=⋅ CN ⋅
()FN ⋅

() bFN ⋅⋅

26

Evaluation (3/7)

Table I illustrates how different enhancements of YAPPERS affect
and when running over the Gnutella snapshot with b = 32.
The last line in the table provides the baseline comparison of running
straight Gnutella.
From the table, notice that to execute a total lookup, Gnutella has to
contact every node.
In contrast, YAPPERS only contacts 8% to 18% of the nodes
depending on the enhancement.

C
F

27

Evaluation (4/7)

For completeness, we show the cumulative distribution of colors per
node for YAPPERS in Figure 7.
The x-axis shows the number of colors assigned to a node and the y-
axis shows the percentage of nodes with equal or fewer colors.
Pruning indeed reduces the number of colors on the high degree
nodes as we reach the 100 percentile at 11 colors per node with
pruning as opposed to 27 without.

28

Evaluation (5/7)

Table II shows the average fan-out degree for YAPPERS with
various enhancements.
As we apply the fan-out reduction techniques and avoid overloading
high connectivity nodes with extra colors, the fan-out is reduced to 82.
Large fan-out degree has both positive and negative impact on
performance. On one hand, lookups are propagated much faster
through the network in YAPPERS. On the other hand, we need extra
state information to keep track of these nodes in the extended
neighborhood and connection states (if any).

29

Evaluation (6/7)

The natural question is: how many hash buckets (colors) is ideal for
YAPPERS?
First, Figure 8 shows the search efficiency where we have the fraction
of nodes contacted during a lookup on the yaxis and the number of
hash buckets, b, used on the x-axis.

30

Evaluation (7/7)

Figure 9 shows the overhead in terms of the average forwarding fan-
out degree per node per hash bucket (color).
The y-axis shows the average degree and the x-axis shows the
number of hash buckets, b, used.
We see that b = 16 is the sweet spot for this Gnutella snapshot.

31

Conclusions

Our scheme is a hybrid that uses distributed hash tables (DHTs) in
small areas and uses intelligent forwarding over large areas.
The main advantages are that our scheme:

disturbs only a small fraction of the nodes in the overlay for each search.
does not require restructuring the underlying overlay network.
each node requires only knowledge of a small neighborhood and is
independent of the rest of the overlay, and is thus less affected by node
arrivals and departures.

	YAPPERS :A Peer-to-Peer Lookup Service over Arbitrary Topology
	Outline
	Introduction(1/4)
	Introduction (2/4)
	Introduction (3/4)
	Introduction (4/4)
	YAPPERS (1/3)
	YAPPERS (2/3)
	YAPPERS (3/3)
	The Immediate Neighborhood (1/3)
	The Immediate Neighborhood (2/3)
	The Immediate Neighborhood (3/3)
	The Extended Neighborhood (1/6)
	The Extended Neighborhood (2/6)
	The Extended Neighborhood (3/6)
	The Extended Neighborhood (4/6)
	The Extended Neighborhood (5/6)
	The Extended Neighborhood (6/6)
	Maintaining Topology (1/2)
	Maintaining Topology (2/2)
	Enhancements (1/3)
	Enhancements (2/3)
	Enhancements (3/3)
	Evaluation (1/7)
	Evaluation (2/7)
	Evaluation (3/7)
	Evaluation (4/7)
	Evaluation (5/7)
	Evaluation (6/7)
	Evaluation (7/7)
	Conclusions

