
1

Probabilistic Location and 
Routing

IEEE INFOCOM 2002

謝志峰

2003/7/23



2

Outline
Introduction
Bloom Filters
Attenuated Bloom Filters
Tapestry
Simulation
Conclusions



3

Introduction (1/2)
It introduces two important challenges to system architects. 

First, if replicas may be placed anywhere, how should we 
locate them? 

Second, once located one or more replicas, how should we 
route queries to them?



4

Introduction (2/2)
Probabilistic location and routing algorithm is based on 
attenuated Bloom filters:

It is decentralized. 

It is locality aware. 

It follows a minimal search path. 

It uses constant storage per server. 



5

Bloom Filters(1/2)
A Bloom filter is a bit-array of length w with 
independent hash functions.

To determine whether contains a given element:

If any of the bits are not set, the represented 
set definitely does not contain the object.

If all of the bits are set, the set may contain 
the object.



6

Bloom Filters(2/2)
An array of W bits that serve to summarize a set of 
objects. 

The represented set probably contains the name 
“Uncle John’s Band”, since bits 0, 3, and 7 are all true. 

It definitely does not contain “Box of Rain”, since bit 8 
is false.



7

Attenuated Bloom Filters (1/4)
An attenuated Bloom filter of depth d is an array of d 
normal Bloom filters.

The  ith Bloom filter is the merger of all Bloom filters for 
all of the nodes a distance i through any path starting 
with that neighbor link.

The distance is in terms of hops in the overlay network.



8

Attenuated Bloom Filters (2/4)
Filters are labeled with their level (top filter is level 1). 
Each outgoing link (say, A -> B) with it (FAB ). 

Level 1 summarizes replicas on the neighbor at the 
end of the link. 

Level 2 summarizes replicas that are two-hops away 
along that link, etc. 



9

Attenuated Bloom Filters (3/4)
Both “Uncle John’s Band” and “Sugar Magnolia” are two 
hops away from Node A through Node B, so the 
second level of filter FAB contains true values (0, 2, 3, 
5, 7).

In  FAB , the document “Uncle John’s Band” would map 
to the potential value 1/4+1/8=3/8



10

Attenuated Bloom Filters (4/4)

01010100
10111011
11011110
11010101
01101001

1/32
1/16
1/8
1/4
1/2

L5
L4
L3
L2
L1For example

If potential value
=13/32
=8/32+4/32+1/32
=1/4+1/8+1/32

Location in L2,L3,L5



11

The Query Algorithm 
To perform a location query, the querying 
node examines the 1st level of each of its 
neighbors filters.

If one matches , query is forwarded to the matching 
neighbor closest to the current node. 

If no filter matches, the querying node looks for a 
match in the 2nd level of every filter. 

The query can be returned to be sent on to the next 
best neighbor.



12

The Update Algorithm (1/2)
When a new document is stored, the server calculates 
the changed bits in its own filter and in each of the filters 
its neighbors maintain of it. 

It then sends these bits out to each neighbor. 

On receiving messages, each neighbor attenuates the bits 
one level and computes the changes they will make in each 
of its own neighbors’ filters. 



13

The Update Algorithm (2/2)
We then perform the following types of filtering:

destination filtering: Destination servers remember 
the identifiers of every update they see. This filtering 
prevents redundant information.

source filtering: Once receiving a duplicate update, it 
sends a message to that neighbor to inform it of this 
redundancy and stops forwarding new updates.



14

Tapestry (1/4)
Tapestry begins with the assumption that 

Every server and document can be named with a unique, location 
independent identifier. 

Node-IDs for the node names and globally unique identifiers (GUIDs) for 
the documents.

It represented as a sequence of hexidecimal digits.

A query is routed from node to node until the location of a replica is 
discovered, at which point the query proceeds to that replica.

Once Tapestry has discovered the location of a replica, it forwards the 
query to the replica closest to the point of discovery.



15

Tapestry (2/4)

Every node is connected to other nodes via 
neighbor links of various levels. 

Level-1 edges from a node connect to the 15 nodes 
closest with different values in the lowest digit of 
their addresses. 

Level-2 edges that match in the lowest digit and 
have different second digits, etc.

7224--> L1-->BA72

7224--> L2-->FA44

7224--> L3-->2A24

7224--> L4-->8224



16

Tapestry (3/4)

Publication in Tapestry.

It illustrates two replicas with the 
same GUID (8734) exported by 
server nodes 8224 and 39AA. 

To publish document 8734, server 
39AA sends publication request 
towards the root.



17

Tapestry (4/4)
Queries route toward the root node 
until they encounter a location pointer, 
then route to the located replica. 

If multiple pointers are encountered, 
the query proceeds to the closest 
replica.

In the worst case, a location operation 
involves routing all the way to the root. 



18

Simulation  (1/4)

We constructed a physical network topology 
using the transit-stub model of GT-ITM [16].

all stub to stub edges are 100 Mb/s
all stub to transit edges are 1.5 Mb/s
all transit to transit edges are 45 Mb/s. 
(Fast Ethernet, T1, and T3 connections).

The static and the dynamic experiments are 
based on whether the set of replicas  changes 
during the test.



19

Simulation (2/4)

As the width of the bloom filters 
increases, the false positive rate 
drops quickly. 

A total index size of around 1.83 
kilobytes is sufficient to limit the 
number of such failing queries.

Static Experiment 
Bloom Query Failures vs. Index Size.



20

Simulation (3/4)

The total size of the Bloom filter 
index at each node is fixed at 
0.136 percent of the data size, 
as suggested by the previous 
results.



21

Simulation (4/4)

This graph shows the average 
routing stretch as a function of 
routing algorithm for the 
dynamic simulations.

The hybrid algorithm far 
outperforms Tapestry alone for 
all filter depths. 

Dynamic Routing Stretch vs. Algorithm. 



22

Conclusions

probabilistic routing algorithm designed to improve the 
location latency of existing deterministic approaches.

The algorithm finds nearby replicas quickly, and if no 
such replicas exist, it fails quickly as well.

The algorithm may be combined with a deterministic 
algorithm to improve average routing stretch for 
nearby documents.



23

Discussions

Cache Usage

Attenuated bloom filter
The array must be very large in large network.

Tapestry
Roots must have large memory. 
Roots look like servers.
Query for the top of root last time
Tree


	Probabilistic Location and Routing
	Outline
	Introduction (1/2)
	Introduction (2/2)
	Bloom Filters(1/2)
	Bloom Filters(2/2)
	Attenuated Bloom Filters (1/4)
	Attenuated Bloom Filters (2/4)
	Attenuated Bloom Filters (3/4)
	Attenuated Bloom Filters (4/4)
	The Query Algorithm
	The Update Algorithm (1/2)
	The Update Algorithm (2/2)
	Tapestry (1/4)
	Tapestry (2/4)
	Tapestry (3/4)
	Tapestry (4/4)
	Simulation  (1/4)
	Simulation (2/4)
	Simulation (3/4)
	Simulation (4/4)
	Conclusions
	Discussions

