
11

Cooperative Peer Groups in NICECooperative Peer Groups in NICE

INFOCOM 2003INFOCOM 2003

謝志峰謝志峰

2003/9/252003/9/25

22

OutlineOutline
IntroductionIntroduction
Cooperative SystemCooperative System
NiceNice
Distributed Trust ComputationDistributed Trust Computation
SimulationsSimulations
ConclusionsConclusions
CommentComment

33

IntroductionIntroduction

A distributed scheme for trust inference in peer-to-peer
networks.

NICE system is a platform for implementing cooperative applications over
the Internet.

We describe a technique for efficiently storing user reputation information
in a completely decentralized manner.

We present a new decentralized trust inference scheme that
can be used to infer across arbitrary levels of trust.

44

Cooperative System Cooperative System
We define a cooperative application as one that allocates a
subset of its resources, processing, bandwidth, and storage, for
use by other peers.

The goal is develop algorithms that will allow “good” users to
identify other “good” users, and thus, enable robust
cooperative groups.

55

Cooperative SystemCooperative System
Let the “good” nodes find each other quickly and efficiently:
Good nodes should be able to locate other good nodes without
losing resources interacting with malicious nodes.

Malicious nodes and cliques should not be able to break up
cooperating groups by spreading mis-information to good
nodes.

66

NICENICE

NICE is a platform for implementing cooperative
distributed applications.

Applications in NICE gain access to remote resources
by bartering local resources.

Transactions in NICE consist of secure exchanges of
resource certificates.

77

NICENICE

NICE provides the following services:
Resource advertisement and location
Secure bartering and trading of resources
Distributed “trust” valuation

88

NICE NICE

Trust-based pricing:

In trust-based pricing, resources are priced proportional to mutually
perceived trust.
From Alice to Bob is TAlice(Bob) = 0.5, and TBob(Alice) = 1.0
Alice trades with a principal with lower trust she incurs a greater risk
of not receiving services in return.

99

Distributed Trust Distributed Trust Compution Compution

Each involved user produces a signed statement
(called a cookie) about the quality of the transaction.

Consider a successful transaction t between users Alice and
Bob in which Alice consumes a set of resources from Bob.

After the transaction completes, Alice signs a cookie c .

Each transaction creates new cookies which are stored by
different users.

1010

Distributed Trust Distributed Trust Compution Compution
Strongest path:

Alice chooses the strongest path, and uses the minimum
trust value on the path as the trust value for Bob.
The strongest path is AEFB, and Alice infers a trust level of
0.8 for Bob.

Weighted sum of strongest disjoint paths:
ACDB is the other disjoint path (with strength 0.6), and the
inferred trust value from Alice to Bob is 0.72.

1111

Distributed Trust Inference:Basic AlgorithmDistributed Trust Inference:Basic Algorithm

Each user stores a set of signed cookies that it receives as a result of
previous transactions.

Suppose Alice wants to use some resources at Bob’s node.
Either Alice already has cookies from Bob, or Alice and Bob have not had any
transactions yet.

When Alice has no cookies from Bob.
Alice initiates a search for Bob’s cookies at nodes from whom she holds cookies.
Suppose Alice has a cookie from Carol, and Carol has a cookie from Bob.
Carol gives Alice a copy of her cookie from Bob.
Alice presents two cookies to Bob: one from Bob to Carol, and one from Carol to
Alice.

1212

Refinements Refinements
Whenever node receives a cookie from some other node, it
also receives a digest of all other cookies at the remote node.

Each node keeps a digest of recently executed searches and
uses this digest to suppress duplicate queries.

1313

Negative CookiesNegative Cookies
It follows high trust edges out of Bob and terminates when it
reaches a negative cookie for Eve.

The search returns a list of people whom Bob trusts who have
had negative transactions with Eve in the past.

If Bob discovers a sufficient set of negative cookies for Eve,
he can choose to disregard Eve’s credentials, and not go
through with her proposed transaction.

1414

Simulations Simulations

We simulate a stable system consisting of only good users.
we assume that all users implement the entire search protocol
correctly.
Each query starts at a node s chosen uniformly at random and
specifies a search for cookies of another node t chosen
uniformly at random.

1515

SimulationsSimulations

The higher threshold searches have a less possible
absolute margin of error, and thus produce the best
paths.
However, very high threshold searches are also more
likely to produce no results.

1616

SimulationsSimulations

The number of failed transactions are proportional to the
number of bad users in the system.
Bad nodes rapidly fill the preference lists of good nodes, but
are quickly identified as malicious.

1717

ConclusionsConclusions

A low overhead trust information storage and search algorithm
is used in the NICE system to implement a range of trust
inference algorithms.

We have presented a scalability study of our algorithms, and
have shown that our technique is robust against a variety of
attacks by malicious users.

1818

CommentComment

Cache

QoS

Routing

	Cooperative Peer Groups in NICE
	Outline
	Introduction
	Cooperative System
	Cooperative System
	NICE
	NICE
	NICE
	Distributed Trust Compution
	Distributed Trust Compution
	Distributed Trust Inference:Basic Algorithm
	Refinements
	Negative Cookies
	Simulations
	Simulations
	Simulations
	Conclusions
	Comment

