
11

PeerPeer--toto--PeerPeer SupportSupport for for MassivelyMassively
MultiplayerMultiplayer GamesGames

INFOCOM 2004INFOCOM 2004

謝志峰謝志峰

2004/2/242004/2/24

http://www.cis.upenn.edu/~hhl/Papers/infocom04.pdf
http://www.cis.upenn.edu/~hhl/Papers/infocom04.pdf
http://www.cis.upenn.edu/~hhl/Papers/infocom04.pdf
http://www.cis.upenn.edu/~hhl/Papers/infocom04.pdf

22

OutlineOutline
Introduction Introduction
PastryPastry
General Distributed Game General Distributed Game DesignDistributed DesignDistributed
Game On A P2P OverlayGame On A P2P Overlay
ExperimentExperiment
ConclusionsConclusions

33

IntroductionIntroduction

We present an approach to support massively multi-player games (MMGs) on peer-to-
peer overlays.

Games are different from previous P2P applications that focus on the harnessing of idle
storage and network bandwidth, including

storage systems,

content distribution

instant messaging .

We have designed scalable mechanisms to distribute the game state to the
participating players

to maintain consistency in the face of node failures.

dynamically scales with the number of online players.

more flexible

lower deployment cost than centralized games servers.

44

IntroductionIntroduction

Three potential problems must be addressed to make this approach fully
applicable in practice:

Performance—
games have frequent updates
under certain time constraints.
peers have limited bandwidth

Availability—replicating game states to improve availability has two potential
problems.

once offline, its state becomes stale and the replica becomes invalid.
high update frequency, maintaining a large set of replicas is a potential
performance bottleneck.

Security—
the prevention of cheating during game
Distributing game increases the opportunities for cheating.

55

PastryPastry
Pastry maps both the participating nodes and the
application objects to random

uniformly distributed IDs from a circular 128-bit name space
implements a distributed hash table to support object insertion and
lookup

Objects are mapped on the live nodes whose ID is
numerically closest to the object ID.

we have four nodes with IDs 1, 3, 7 and 10, then message 4 will be
routed to node 3, and message 8 to node 7.

66

General Distributed Game DesignGeneral Distributed Game Design

Our idea is to distribute the transient game state of the MMGs on a peer-to-
peer network.

The system could also be used
without a server for ad hoc game sessions when hundreds or thousands of
players gather together.

that players in games have limited movement speed and sensing capabilities,
thus the data access in games exhibits both temporal and spatial localities.

77

General Distributed Game DesignGeneral Distributed Game Design
We split game state management into the classes presented
below.
1) Player state:

Each player updates his own location as he moves around.
Player-player interactions, such as fighting and trading, only affect the
states, e.g., life points, of the players involved.
Because position change is the most common event in a game, the
position of each player is multicast at a fixed interval to all other
players in the same region.

88

General Distributed Game DesignGeneral Distributed Game Design
2) Object State:

We use a coordinator-based mechanism to keep shared objects
consistent. Each object is assigned a coordinator, to which all updates
are sent.

The coordinator both resolves conflicting updates, and is a repository
for the current value of the object.

Successful updates are multicast to the region to keep each player’s
local copy fresh.

99

General Distributed Game DesignGeneral Distributed Game Design
3) The Map:

Graphic elements for the terrain and players are typically
installed as part of the game client software, and can be
updated using the normal software update mechanisms.

Maps are considered read-only because they remain
unchanged during the game play.

1010

Distributed Game On A P2P OverlayDistributed Game On A P2P Overlay
We base our discussions on Pastry.

we group players and objects by regions

distribute the game regions onto different peers by mapping them to the
Pastry key space.

each region is assigned an ID, computed by hashing the region’s
textual name

a live node whose ID is the closest to the region ID serves as the
coordinator for the region.

1111

Distributed Game On A P2P OverlayDistributed Game On A P2P Overlay

We design a lightweight primary-backup mechanism to tolerate fail-stop
failures of the network and nodes.

keep at least one replica up under all circumstances, to prevent losses.
given an object with key K, then the numerically closest node N will be its
coordinator.
make the next numerically closest node M the object replica. (N,M : ∀ I : |N -
K| ≤ |M - K| ≤ |I - K|.)

Pastry message with key K will always be routed to the corresponding
coordinator N, and should N fail, this message will instead be routed to the
replica M.

1212

Distributed Game On A P2P OverlayDistributed Game On A P2P Overlay
Networked games and distributed real-time simulations have exploited this
property and applied interest management to game state.

partition the world into regions based on the limited sensing capabilities
players in the same region form an interest group for that portion of the map
state updates relevant to that part are disseminated only within the group.

1313

Distributed Game On A P2P OverlayDistributed Game On A P2P Overlay

The fault-tolerance problem:
The replicas must be kept consistent upon node and network failures.
Pastry provides limited fault-tolerance in that their routing, but game
states still need to be replicated to improve their availability.

Node failures are independent:
The node ID assignment in P2P networks is quasi-random.
There is no correlation between the node ID.

1414

Distributed Game On A P2P OverlayDistributed Game On A P2P Overlay

The failure frequency is relatively low:
We expect players to be online for extended periods of time and have
incentives not to disconnect except when they exit (gracefully).
It also means we need fewer replicas of data to maintain consistency in
the face of node failures.

Messages will be routed to the correct node:
The low failure frequency implies that a key will almost always be
routed to the node whose ID is numerically closest to key.
With a much lower failure frequency, it is reasonable to assume that
messages eventually reach the correct node.

1515

ExperimentExperiment
Players can perform three different actions—moving, eating and fighting.

Each multicast message for position updates includes player ID, the current
location on the map, and a player specific sequence number.

We distribute the computational and communication load by mapping
regions to the Pastry key space.

Each region consists of a 200x300 map grid and is described using a 60 KB
array.

Associated with each region is also a 60KB object array.

1616

ExperimentExperiment
It presents the distribution of message rates for 1000 and 4000 players with
100 and 400 regions.
Each node receives between 50 and 120 messages per second, which
matches our expectations given the region density (10 players/region) and
update frequency (about 7/second) yielding 10*7 update messages per
second.
Eating and fighting take place at intervals of 20 seconds, region change at
intervals of 40 seconds.

1717

ExperimentExperiment
Most unicast and multicast messages are delivered within six

1818

ExperimentExperiment
Since updates are multicast, this allows us to aggregate
messages in the root before relaying them.
This allows us to both reduce the number of messages and the
average per-node load.

1919

ConclusionsConclusions

They have demonstrated that a new application, massively multiplayer
games, can be supported on peer-to-peer overlays.

The shared state distribution and replication mechanism presented in this
paper not only can handle games, but can also be extended to handle other
forms of peer-to-peer computing.

The P2P architecture is potentially suitable for cheat detection, because
locality of interest and the basic replication scheme apply to both the game
and monitoring of game states.

	Peer-to-Peer Support for Massively Multiplayer Games
	Outline
	Introduction
	Introduction
	Pastry
	General Distributed Game Design
	General Distributed Game Design
	General Distributed Game Design
	General Distributed Game Design
	Distributed Game On A P2P Overlay
	Distributed Game On A P2P Overlay
	Distributed Game On A P2P Overlay
	Distributed Game On A P2P Overlay
	Distributed Game On A P2P Overlay
	Experiment
	Experiment
	Experiment
	Experiment
	Conclusions

