Peer-to-Peer Keyword Search Using Keyword Relationship

Kiyohide Nakauchi Yuichi Ishikawa

Hiroyuki Morikawa

Tomonori Aoyama

School of Engineering, The University of Tokyo
{nakauchi, ishikawa, mori, aoyama} @mlab.t.u-tokyo.ac.jp

Abstract

Decentralized and unstructured peer-to-peer (P2P) net-
works such as Gnutella are attractive for Internet-scale in-
Sformation retrieval and search systems because they require
neither any centralized directory nor any centralized man-
agement of overlay network topology and data placement.
However, due to this decentralized architecture, current
P2P keyword search systems lack useful global knowledge
such as popularity of data items and relationships berween
keywords and data items. As a result, current P2P keyword
search systems supports only naive text-match search and
can find only data items with a keyword (or meta-data) ex-
actly indicated in a query.

In this paper, we show an efficient P2P search sys-
tem which increases possibility of discovering desired data
items. The key mechanism is query expansion, where a re-
ceived query is expanded based on keyword relationships
managed in a distributed fashion by participating nodes.
Keyword relationships are improved through search and re-
trieval processes and each relashionship is shared among
nodes holding similar data items. We also present imple-
mentation of our P2P search system.

1. Introduction

As the number of contents on the Web grows into the bil-
lions, the larger and larger portions of those contents are not
accessible through centralized search engines [1, 2]. Re-
cent Estimates [3] in March 2000 place the size of deep
Web nearly 500 times the size of publicly indexable Web.
The deep Web continues to grow at a remarkable rate, as
the more existing databases are online, over which Web-
accessible search facilities are provided. This fact shows
the necessity of search infrastructure scaling at a compara-
ble rate.

Peer-to-peer (P2P) systems are now one of the most
prevalent Internet distributed applications due to their scala-

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

bility, fault-tolerance, and self-organizing nature. This trend
was triggered in 1999 by Napster [4], a centralized archi-
tecture, where a central directory server offers an index to
locate data items. However, legal issues of Napster inher-
ent in its centralized architecture shifted the interests of the
research community and Internet users to a decentralized ar-
chitecture, where the index, query processing, and content
transfer are fully distributed among nodes.

The primarily focused problems of decentralized archi-
tectures are scalability and partial-match lookup capability.
One class of the decentralized architectures is an unstruc-
tured P2P system such as Gnutella [5], where the overlay
topology is formed in accordance with some loose rules
[6]. Data items are indexed locally and the query can be re-
solved only by the nodes that holds them. Due to this loose
structure, queries are typically flooded. Thus unstructured
P2P systems are flexible enough to support partial-match
lookup or other text-based search mechanisms, and are very
robust against nodes’ failure and removal. Though the sys-
tems achieve poor scalability due to query flooding, recently
some efforts are made to improve scalability. For example,
FastTrack [7] organizes subscribing nodes into loosely hi-
erarchical structure where some nodes are selected as su-
pernodes and cache the index. Multiple random walks [8]
and associative overlays [9] reduce the number of forwarded
queries by limiting searches to a fraction of the population.

The other class of the decentralized architectures is a
structured P2P system commonly referred to as Distributed
Hash Tables (DHTs) [10, 11, 12, 13], where the overlay
topology is tightly controlled. The nodes that are required to
store or index data items are precisely determined based on
some hashing algorithms. This tightly controlled structure
enables to forward queries deterministically, and achieves
very effective content location. While structured P2P sys-
tems are highly scalable for locating data items with unique
item identifier, inherently they cannot efficiently provide
partial-match lookup capability. Some works [14, 15] try
to achieve partial-match lookup on DHTs. In addition, it
is widely recognized that due to their tight control, DHTs

TEEE ':a

COMPUTER

SOCIETY

incur much larger overhead to re-organize the overlay net-
work than unstructured P2P systems when nodes fail or
leave the network.

As described above, current P2P systems are actively im-
proved by the research community to achieve both scala-
bility and partial-match lookup capability simultaneously.
However, search algorithms of current P2P systems still
seem not to be efficient enough when compared to the so-
phisticated state-of-the-art IR algorithms. This is because
current P2P keyword search systems lack useful global
knowledge such as popularity of data items and relation-
ships between keywords and data items, which would be
difficult to obtain or compute in decentralized architectures.
That is, while current P2P systems support naive text-match
search, they cannot support semantic search. As aresult, the
systems can only find data items which are given a keyword
(or meta data) exactly indicated in a query.

The most familiar mechanism enabling semantic search
is query expansion [16, 17], which has been investigated
as an IR technique for several decades. Query expansion
means adding relevant terms to the original query. The pur-
pose of query expansion is to cope with the mismatch be-
tween the term used by searcher and that expected by writ-
ers of the documents. This mismatch may be due to syn-
onymy, where different terms have the same meaning, or
granularity, where terms are used at different levels of de-
tail. We believe that in P2P search systems, query expansion
could significantly improve the possibility to locate desired
data items because most of the contents current popular P2P
search systems are dealing with are multimedia contents,
which have only several keywords in general.

Our goal is to build an efficient decentralized P2P search
system that supports semantic search by query expansion,
while retaining desirable properties of prevailing unstruc-
tured P2P systems such as simplicity and robustness. In our
system, not only well-defined items, which are given key-
words easy to imagine for searchers, but also poorly-defined
items, which are given keywords generally or unexpectedly
difficult to image for searchers, can be found efficiently.

In traditional IR systems, query is expanded generally
based on some kind of database such as a thesaurus, which
keeps relationships between terms extracted from the statis-
tics computed in advance using samples representative of
enough amounts of documents. In P2P keyword systems,
however, because of the decentralized nature, it is not de-
sirable that any centralized node calculates the statistics to
obtain keyword relationships or keeps the thesaurus. We
believe, even if the complete thesaurus exits, the thesaurus,
which may be huge enough for a node to store, should be
divided and each portion should be kept among distributed

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

nodes in order to retain the general advantages of P2P sys-
tems such as robustness and load balancing. We also be-
lieve that keyword relationships, though they may change
at relatively slow rate, should be computed distributedly for
the same reason. Thus the key challenge of our P2P search
systems is to construct the thesaurus in a fully distributed
manner.

In this paper, we describe the basic mechanism of P2P
keyword search using keyword relationships and the dis-
tributed mechanisms of updating a thesaurus. In our sys-
tem, we name the thesaurus Keyword Relation DataBase or
KRDB. Each node holds a KRDB, and the KRDB keeps
keyword relationships which are relevant only for the data
items the node stores. The accuracy of KRDBs significantly
affects the search performance. We propose two KRDB up-
date mechanisms; evaluation feedback and KRDB synchro-
nization.

In general, search with query expansion leads to in-
crease, or in the worst case, implosion of search results. To
cope with this problem, in addition to KRDB improvement,
we introduce results ranking, where the data items with
more relevant keywords with a query are ranked higher.
Fortunately, we can leverage KRDBs for this purpose by in-
troducing the concept of “’strength” for each keyword rela-
tionship. We believe the ranking algorithm presented in this
paper would also benefit traditional P2P search systems.

Several features that differentiate our P2P keyword
search system from others are as follows.

¢ It is controlled in a fully distributed fashion, without
any single point of failure and any centralized man-
agement and placement of the thesaurus.

o It supports semantic search in addition to naive text-
match search.

e [t enables results ranking.

The reminder of this paper is organized as follows. In
Section 2, we describe the overview and basic mechanisms
of P2P keyword search with query expansion based on
keyword relationships. Section 3 describes the distributed
update mechanisms of KRDBs to enhance search perfor-
mance. We present implementation of our P2P search sys-
tem in Section 4, and conclude in Section 5.

2. P2P Search with Query Expansion

The fundamental idea in our P2P keyword search mecha-
nism is query expansion using KRDB managed and updated
in a fully distributed manner. In this section, we describe

TEEE ':a

COMPUTER

SOCIETY

how to create a KRDB and then show basic P2P search
mechanism. We also present ranking algorithm.

2.1. KRDB

A KRDB is a thesaurus which keeps some information
about keywords relevant only to the data items stored lo-
cally in a node. That means each node may have a different
and minimum KRDB. This distributed KRDB management
can clearly retain the desirable properties of P2P systems.

The most important information on keywords in a KRDB
is keyword relationship (KR) of each pair of keywords and
its strength (KRStr). In this paper, KR(k;,k;) denotes a
keyword relationship from keyword k; to keyword k; (0 <
KR(k;,ky) < N, where N denotes the maximum number
of keywords in a KRDB). In other words, KR (k;, k) is de-
fined as follows; when keyword k; is given, keyword k;
is referred to as a relevant term to keyword k;. Note that
KR(ks,k;) and KR(ky,k;) should be distinguished from
each other. The other variables in a KRDB are shown in
Section 3.

Before we explain the algorithm of extracting KRs, we
describe our insight for them. Our insight is such that key-
words given to a data item are relevant. In the current P2P
search systems, we assume data items are mainly multime-
dia contents such as audio and video, which have generally
much fewer keywords than documents because they have
much less textual contents. Therefore, we consider these
keywords represent the characteristics of the data items
more precisely and keyword relationships would be helpful
for finding a limited number of other meaningful keywords.
In addition, the extracted KRs are just initial state, and grad-
ually improved through KRDB update mechanisms shown
in Section 3.

Figure 1 shows how to create KRs between keywords.
There are two processes to create KRs. First, when a node
joins the P2P network, the node firstly extract all the key-
words for each local data item. For example, the node
takes out four keywords A,B,C,D from data item 1. We
consider these keywords have relationships between each
other. Following the definition of KR(k;, k;), twelve KRs
are created from data item 1. In the same way, twelve
and six KRs are created from data item 2 and 3 respec-
tively. Each KR(k;,k;) keeps KRStr(ks, k;), which de-
notes the strength of KR (k;,k;) (0 < KRStr(ks, k) < 1).
Larger KRStr(k;, k) means KR(k,,k;) is stronger, and
KRStr(k,,k;) is set to 1. KRStr is updated to reflect more
accurate KR based on both evaluation feedback and KRDB
synchronization described in Section 3, and is used for re-
sults ranking. The initial value of KRStr is KRStrInit (0.5

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

Shared Data ltems in Node #1

Keywords of item3 "

’ Keywords of ltem1 Keywords of tem2
Aftribute | Value Aftribute | Value Attribute | Value
Attribute a A Attribute b B Aftribute e E
Attribute b B Attribute e E Attribute h H
Attribute ¢ c Aftribute f F Attribute i |
H Attribute d D Aftribute g G
.‘*-,. {Keywords are stored as (aitribute,value) sets)‘_ i
Creati - B
oy | IF(KRStr(F,E}x KRStr(E,l)
¢ | > krstrThresh)
{ create KR(F) ;
KRStr(F,I) = KRStrinit ;

- O : Keyword
. «=w :Keyword Relationship (KR)

Figure 1. Creating Keyword Relationships
from Local Data ltems

in our system).

Then, additional KRs are created, if two KRs share a
common keyword. For example, as shown in Figure 1, if
the value of KRStr(F,E) X KRStr(E, I) is larger than the
pre-defined threshold KRStrThresh, KR(F, I) is newly cre-
ated. However, less useful KRs are removed from KRDBs
to prevent the waste of storages and computation power (see
3.2).

2.2. Basic P2P Search Mechanism

In our P2P keyword search system, in the same way
as traditional unstructured P2P systems, overlay topology
is organized in accordance with some loose rules [6]. A
query includes several keywords and is flooded to be re-
solved. This unstructured architecture enables the system
to retain desirable properties such as simplicity and robust-
ness against node’s failure or removal.

The key mechanism of our P2P keyword search system,
which differentiates our system from traditional unstruc-
tured P2P systems, is query expansion at nodes that receive
the query. Figure 2 shows the basic search mechanism using
query expansion.

An alternative approach would be query expansion only
at a searcher. A query is not expanded at nodes that receive
the query. This approach, however, would work well only
if a searcher desires data items with the same keywords as
those in its local KRDB. Otherwise, the query is not ex-
panded anywhere, that leads to the same search results as
those of traditional non-semantic P2P search.

When a node join the P2P network, the node first con-

TEEE ':a

COMPUTER

SOCIETY

structs a KRDB in the way described in Section 2.1. The
search process is as follows.

1. A searcher sends a query which indicates several key-
words. This query is flooded (forwarded peer-to-peer)
with certain TTL. Note that the forwarded query is
identical with the received query (query expansion af-
fects only local search), because consecutive query ex-
pansion at different nodes for leads to query explosion
with less relevant keywords, so that the possibility in-
creases to find less desired data items.

2. A node that receives the query performs query expan-
sion using a local KRDB. Specifically, the original
query is expanded to include several additional key-
words to which there is a KR from keywords in the
original query. For example, at Node #1 in Figure 2,
there exists KR(red, apple), so keyword red is ex-
panded to two keywords red + apple. In the same
way, keyword fruits is expanded to two keywords
fruits + apple. As aresult, the original query is ex-
panded to the query red + fruits + apple.

3. Node #1 searches local data items using the expanded
query. If there exists any data item which has one or
more keywords of the expanded query, Node #1 replies
to the searcher with search results (a list of satisfied
data items) using a QueryHit message.

4. The searcher gathers search results and ranks all the
located data items. The ranking algorithm is shown in
2.3. Then the searcher selects one or more desirable
data items, and search itself is completed.

5. At the same time, the searcher feedbacks the evalua-
tion to all the nodes which returned search results ob-
tained using KR(red, apple) or KR(fruits, apple)
(Node #1 and #2 in Figure 2) for the purpose of up-
dating KRDBs in those nodes. Evaluation results indi-
cate the KRs which are used to locate the selected data
items. The details of evaluation feedback are described
in3.1.

2.3. Results Ranking

The search results are ranked using KRStr between a
keyword in an original query and that given to the located
data item. The basic idea of results ranking is that when
an original query includes keyword k, the rank of the data
item gets higher as KRStr(k, 1) is larger, where 1 denotes
a keyword given to the data item. If several keywords are

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

@ Query expansion based on KRDB
@ Searching with the expanded query
and replying with QueryHit if any

Shared local data items

@ Sending a query
@ Ranking the search results
® Evaluation feedback (KRDB update)

- red

ofoits F - 0) R e
-

- appie

construction

Node #3 KRDB synchronization

{KRDB update)

Figure 2. Basic P2P Search Mechanism

included in a query, or are given to data items, the above
ranking algorithm is changed as follows; when an original
query includes keywords k; (i = 1,2, ...), the rank of the
located data item gets higher as simply Z . KRStr(ks,1s/)
is larger, where 1; (i’ = 1,2,...) denote keywords given
to the data item. Note that other sophisticated ranking
algorithms using KRStr could be applied. We believe
these ranking algorithms would also benefit traditional P2P
search systems only for the purpose of results ranking by in-
troducing KRDB-like databases unnoticeable for users into
the search systems. Such application is beyond the scope of
this paper.

3. Distributed KRDB Updates

In our P2P keyword search system , the accuracy
of KRDBs significantly affects the search performance.
Therefore KRDBs are required to be updated and kept as ac-
curate as possible. In this paper, we show two KRBD update
mechanisms; evaluation feedback and KRDB synchroniza-
tion. Evaluation feedback aims to improve KRDBs through
a search process. In this mechanism, subjective evaluations
of searchers are directly reflected to KRDBs, and poten-
tial statistical effects could be expected. On the other hand,
KRDB synchronization aims to improve KRDBs which in-
clude inaccurate information due to its special environments
where, for example, the node has just joined the P2P net-
work, or the node has just exposed a lot of new data items.
These two update mechanisms are complementary to each
other and are essential for keeping KRDBs accurate.

3.1. Evaluation Feedback

Evaluation feedback updates KRStr(k;, ky) in the nodes
which replied to the searcher with resulted data items found

II'FI'

COMPUTER

SOCIETY

Table 1. Variables in a KRDB

Ifk; is PK, PKFlag(k;) = 1.
Else, PKFlag(ki) = 0.

PKFlag(k;)

KRStr(k:, kj) Strength of KR(k;, k;).

(0 S KRStr(ki,kj) S 1)

Count that KR(k;,k;) is used for
search.

UsedCnt(k;, k)

HelpfulCnt(ks,k;) | Count that KR(k;, k) is evaluated to

be helpful.

using KR(k;,k;). The basic idea of evaluation feedback
is as follows; when a searcher initiates a query with key-
word k; and then selects a data item with keyword k; from
the resulted item list (the item was located by query expan-
sion using KR(k;, k;)), KR(k;, k;) is regarded as helpful
and KRStr(k;,k;) is increased. Otherwise, KRStr(k;, k;)
is decreased.

In Table 1, we show the variables kept in a KRDB.
UsedCnt(k;, k;) is incremented when both of the follow-
ing conditions are satisfied; 1) the original query includ-
ing keyword k; is expanded using KRStr(k;,ky) and 2) a
data item with keyword k; is located. On the other hand,
HelpfulCnt(ky, ky) is incremented only when addition-
ally the following third condition is satisfied; 3) a data
item with keyword k; is selected by a searcher. We define
KRStr(k;, k;) using these two variables;

HelpfulCnt(k;, k;)
KRStr(ky, k;) =
Tk, k5) UsedCnt(ky, k;)

This means that KRStr(k;, k) increases as more searchers
regards KR(k;,k;) as useful (HelpfulCnt(k; k;) in-
creases).

Figure 3 show the process of evaluation feedback. In this
figure, a searcher initiates a query including keywords A and
B.

1. Each node receives a query with keyword k; from
a searcher. At this time, a node which keeps
KR(ky,*) (* denotes an arbitrary keyword) incre-
ments UsedCnt(ks, *). In Figure 3, UsedCnt(A, W)
and UsedCnt(B, X) are incremented at Node #1 and
#3, and at Node #1 and #2 respectively. More
specifically, for example, Node #1 initially has
KRStr(A, W) = 3/6 (= 0.5), that means UsedCnt(A, W)
= 6 and HelpfulCnt(A,W) = 3. Then, at Node
#1 UsedCnt (A, W) and UsedCnt (B, X) are incremented
from 6 to 7 and from 7 to 8 respectively.

2. Each node notifies the searcher of search results with
KR(k;, *) used for locating the data item. In Figure 3,

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

(@ //Receive Query indicating A and B
UsedCnt(A,W) ++; UsedCnt(B,X} ++;
@ //Notify resulted items, each with a used KR

- H(KR(A,W) and KR(B,X), raspectivrly)
i;“;‘x"‘?s"‘;-,“’-l ‘?Jm:_ @ /Notify a helpful KR (KR(B,X))
(B.X) is helpful 3 ltem 1: KRAW) HepfulCnt(B,X) ++;

& Iltem 2 : KR{B,X)

® KR(BX) .I

Searcher

(initiates Query with KRSU(AW) | 36 |y | 37 |3y | 37
keuword A and B)
KRS(B,X) | 57 58)
Q
® len, PRt KRSIC.Y) | 27 2 27
3 R(B,,b 3
3 @kR
> @ .x)
Py
2 o~
b
k3 krsuaw) {315 |y [3% | krsuX) &9 | 4, [6r10] g [710
‘ KRSHr(C,Y) | 4/6 KRSINC,Y) | ¥8 s 38
KRSt(D,2) | 3/4 KRStr(D,Z) | 3/4 34 3

Figure 3. KRDB Update by Evaluation Feed-
back

for example, Node #1 notifies the searcher of Item 1
with KR(4, W) and Item 2 with KR(B, X).

3. When a data item without keyword k; (with keyword
k) is selected by the searcher among search results,
the searcher notifies all the responsive nodes by unicast
who keep the same KR (KR (k;, k;)) used to locate the
data item. At this time, the node that receive this eval-
uation feedback increment HelpfulCnt(k;, k;) of the
KRs specified by the feedback.

In Figure 3, the searcher selects data item 2 among
search results. Data item 2 is found using KR(B, X) at
Node #1, so the searcher refers to KR(B, X) as a help-
ful relationship. Then the searcher sends evaluation
feedback (using a KREval message) to Node #1 and
#2, who return the data item found using KR(B, X).
When Node #1 and #2 receive evaluation feedback,
they increment HelpfulCnt(B, X) from 5 to 6, and
from 6 to 7 respectively. Note that HelpfulCnt(A, W)
retains the same value because KR(A, W) is useless for
the searcher.

Thus, strength of the more helpful relationship (
KRStr(B, X)) increases , while that of the less help-
ful relationship (KRStr (4, W)) decreases. KRStx(C, Y)
and KRStr(D, Z) remain as it is, because keyword C
and D are not included in the query.

Through this evaluation feedback process of all the
searchers, each KRStr in KRDBs is gradually and statis-
tically refined.

TEEE ':a

COMPUTER

SOCIETY

3.2. KRDB Synchronization

The KRDB update mechanism by evaluation feedback is
efficient for improving the accuracy of KRStr. However,
evaluation feedback has two drawbacks. First, evaluation
feedback can only evaluate the existing KRs, which are ex-
tracted only from local data items. Second, while evaluation
feedback can basically improve the accuracy of KRDBs, it
would take a long time to make the value of KRStr statis-
tically meaningful. For this reason, the nodes with short
lifetime or the nodes who have just begun to expose new
data items cannot provide accurate KRDBs soon.

To overcome these drawbacks, we propose another
KRDB update mechanism, KRDB synchronization, where
familiar KRs and statistically more accurate value of KRStr
are shared among nodes. The basic idea of KRDB synchro-
nization is as follows; 1) relevant KRs to a node are added
to its KRDB, and 2) when common KRs are kept at some
nodes, the value of KRStr at each node are updated to the
most accurate one.

3.2.1 With Which Nodes Are KRDBs Synchronized ?

In order to efficiently improve KRDBs, it is required for
nodes to synchronize their KRDBs with those in ade-
quate nodes. Considering straightforwardly, adequate nodes
might be nodes which holds as many identical or similar
data items as possible, because consequently they are likely
to keep identical KRs. However, it would be laborious to
check all data items in other nodes. In addition, it would
be difficult to judge remotely whether two data items are
identical or not when their names are different.

Then, we refer to keywords as abstraction of data items,
. and we regard nodes with more common keywords in their
KRDBs as adequate nodes to synchronize with. Here, we
call the keywords which can be extracted only from local
data items Primary Keywords or PKs in order to distinguish
them from additional ones (Secondary Keywords, or SKs)
that are added by KRDB synchronization. Based in this
discussion, we define an adequate node to synchronize with
as the node where the number of the common PKs is larger
than the threshold SynchThresh.

In this paper, the way to discover the adequate nodes is
simply broadcasting. These broadcasted messages could
be merged with query messages. Therefore we consider
this methodology does not degrade scalability. Note that
more sophisticated and scalable discovery algorithms such
as multiple random walks {8] would be applicable. We leave
this issue as a future work.

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

KRDB inNode #1 "ol o o ® KRDB in Node #2
0 9 % =210(=0.2) 9 e 3
ey
g 3011000: KRDB Synchronization 210
S ©—0© ®

@ Updated

KRSHr(B,C)
% = 3011000
© (=0.03)

QO :PrimaryKeyword (PK) +—» : KR be
(O : Secondary Keyword (SK) 4 : KR between PK and SK

A

Figure 4. KRDB Synchronization

3.2.2 Synchronization Mechanisms

Subscribing nodes periodically synchronize their KRDBs
with adequate nodes. Figure 4 shows an overview of the
KRDB synchronization mechanism. At first, a node dis-
covers several adequate nodes for KRDB synchronization
in the way described above. KRDB Synchronization con-
sists of two mechanisms. The first mechanism is KR ad-
dition, where a KR between two PKs or a KR between a
PK and a SK kept in one node is added to the KRDB in the
other node only when one of the two PKs or the PK is com-
mon for those two nodes respectively. In order to avoid KR
explosion, a KR between two SKs in one node is not added
to the other node.

For example, in Figure 4, the KRDB in Node #1 is up-
dated by adding two KRs concerning PK B, KR(B, F) and
KR(F,B), which are extracted from the KRDB in Node
#2, because there exists a common PK B. In the same
way the KRDB in Node #2 is updated by adding four KRs
concerning PK B (i.e. KR(B,D), KR(D,B), KR(B,A), and
KR(A,B)).

KR addition, however, would still have a risk of KR
explosion due to adding useless or meaningless KRs with
common PKs. To further alleviate KR explosion, we re-
move such KRs. Specifically, we remove both useless KRs
with KRSt r smaller than the threshold KRStrMin and mean-
ingless KRs with UsedCnt smaller than the threshold Used-
CntMin

The second is KRStr modification , where KRStr in one
node is updated to that in the other node, which would be
statistically more accurate, when KRs between two PKs are
common for those two nodes. Here, we consider that ac-
curacy of KRStr(k;, ky)(= %‘mﬁ) statistically in-
creases as UsedCnt(ky, k;) increases. For example, in Fig-
ure 4, KRStr(B, C) in Node #2 is updated from 2/10 (= 0.2)

TEEE ':a

COMPUTER

SOCIETY

Ordinary search resuits Searchresults using KRDB

441510
£,015K0
450218
4.985K8

H hicagol01_Niagars_Fulis
2 Ehicagol0_One_Mors_Day
05 oanish Eves
o3 fmeramare

,
Ranking of search results

Figure 5. Implementation on LimeWire

to 30/1000 (= 0.03) because UsedCnt (B, C) in Node #1 (=
1000) is larger than that in Node #2 (= 10).

4. Implementation

‘We are now developing a prototype of P2P search system
with query expansion. We have implemented the search al-
gorithms described in Section 2 and 3 on LimeWire [18],
which is one of the most famous open-source P2P keyword
search applications and written in Java.

Figure 5 is a screenshot of the prototype (LimeWire with
query expansion). The upper window shows the ranked
search results. In order to make clear the difference between
search results of normal search and that with query expan-
sion, and to help performance evaluation and further devel-
opment, the prototype executes normal search and search
with query expansion simultaneously. Note that because
the query routing algorithm is common for these two search

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

mechanism, no more traffic is generated. We make it pos-
sible to switch the display for search results of these two
mechanisms. On the other hand, the lower window shows
the visualized KRDB. The dotted line means the KRs and
quadrangles indicate keywords.

We are now running the prototype at several desktop
PCs in the local area network, and further plan to run it
at several locations globally in the Internet. We are about
to extensively evaluate the performance by system and traf-
fic monitoring, including overhead of computation and traf-
fic for both query expansion and KRDB updates. We also
try to make clear the advantages of query expansion quan-
titatively, though it would be difficult without extensive
and continuous uses. Performance evaluation of such P2P
search systems would be relatively easy through computer
simulations.

5. Conclusion

In this paper, we described the basic concept of an ef-
ficient decentralized P2P search system that supports se-
mantic search by query expansion, while retaining desir-
able properties of prevailing unstructured P2P systems such
as simplicity and robustness. In this P2P search, queries
are expanded based on KRDBs to improve the possibility
to find a desired data item. We proposed a results rank-
ing mechanism to cope with consequent results implosion.
In order to improve KRDBs and to enhance search per-
formance, we proposed two KRDB update mechanisms;
evaluation feedback and KRDB synchronization. We also
showed the prototype implementation of the proposed P2P
search system.

The remaining issues we are now working on include 1)
how to protect our system from DoS attacks or malicious
users who sends large amount of meaningless queries, 2)
how to keep compatibility with original decentralized P2P
search systems with no keyword expansion capability, 3)
how to find most adequate nodes to synchronize KRDBs
with, 4) performance evaluation.

References

[1] Steve Lawrence and C. Lee Giles. Searching the World
Wide Web. Science, Vol. 280, no. 5360, pp. 98-100,
1998.

[2] Steve Lawrence and C. Lee Giles. Accessibility of in-
formation on the web. Nature, Vol. 400, pp. 107-109,
1999.

TEEE ':a

COMPUTER

SOCIETY

[3] Michael K. Bergman. The Deep Web: Surfacing Hid-
den Value. http://www.brightplanet.com/deepcontent/.

[4] Napster. http://www.napster.con/.
[5] Gnutella. http://gnutella.wego.com/.

[6] Clip2 Distributed Search Services. The Gnutella
Protocol Specification v0.4, 2000.
http://www?9.limewire.com/developer/gnutella protocol
04.pdf.

[7} FastTrack. http://www.fasttrack.nu/.

[8] Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott
Shenker. Search and Replication in Unstructured Peer-
to-Peer Networks. Proc. ACM ICS 2002, June 2002.

[9] Edith Cohen, Amos Fiat, and Haim Kaplan. A Case
for Associative Peer to Peer Overlays. Proc. HotNets-
I, Oct. 2002.

{10] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry:
An Infrastructure for Fault-tolerant Wide-area Location
and Routing. Technical Report, UCB/CSD-01-1141,
April 2000.

[11] L Stoica, R. Morris, D. Karger, M. Kaashoek, and H.
Balakrishnan. Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications. Proc. ACM SIG-
COMM 2001, Aug. 2001.

[12] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content-Addressable Network.
Proc. ACM SIGCOMM 2001, Aug. 2001.

[13] A. Rowstron and P. Druschel. Pastry: Scalable, dis-
tributed object location and routing for large-scale peer-
to-peer systems. Proc. Middleware 2001, Nov. 2001.

[14] Huebsch, Boon T. Loo, Scott Shenker and Ion Sto-
ica. Complex Queries in DHT-based Peer-to-Peer Net-
works. Proc. IPTPS 2002, Mar. 2002.

[15] Chungiang Tang, Zhichen Xu, and Mallik Ma-
halingam pSearch: Information Retrieval in Structured
Overlays. Proc. HotNets-1, Oct. 2002,

[16] Mandar Mitra, Amit Singhal, and Chris Buckley. Im-
proving Automatic Query Expansion. Proc. ACM SI-
GIR’98, Aug. 1998.

[17] Hersh WR, Price S, Donohoe L, Assessing thesaurus-
based query expansion using the UMLS Metathesaurus.
Proc. the 2000 Annual AMIA Fall Symposium, 2000.

[18] LimeWire, http://www.limewire.com/.

TEEE ':a

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’03) COMPUTER
0--7695-1919-9/03 $17.00 © 2003 |IEEE SOCIETY

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

