On the Effectiveness of Probabilistic Packet Marking for IP Traceback under Denial of Service Attack

IEEE INFOCOM 2001 Kihong Park, Heejo Lee

Outline

- What is Denial of Service Attack?
- What is IP Traceback?
- Related Work
- New Contribution
- PPM and Traceback
- Analysis of Single-source DoS Attack
- Distributed DoS Attack
- Conclusion

What is Denial of Service Attack?

The attacks used several techniques to crash, hang up, or overwhelm servers with malformed packets or large volumes of traffic.

What is IP Traceback?

 Identified the machines that directly generate attack traffic and the network path this traffic subsequently follows.

Related Work

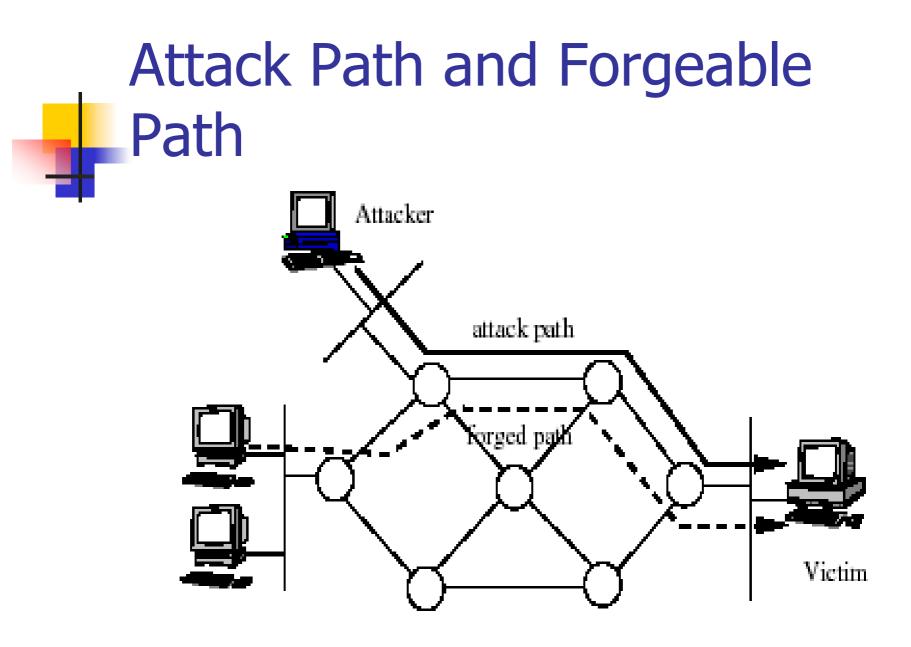
- IP Traceback Scheme:
 - Ingress Filtering
 - Link Testing
 - Logging
 - ICMP Traceback
 - PPM(Probabilistic Packet Marking)

New Contributions

This paper analyze the effectiveness of probabilistic packet marking for IP traceback under DoS attack

PPM and Traceback

- Network Model
 - Directed graph G = (V,E)
 - V : the set of nodes
 - E : the set of edges
 - S : attackers
 - t : victim (V\S)
 - Attack path
 - A = (s, v1, v2, ..., vd, t)



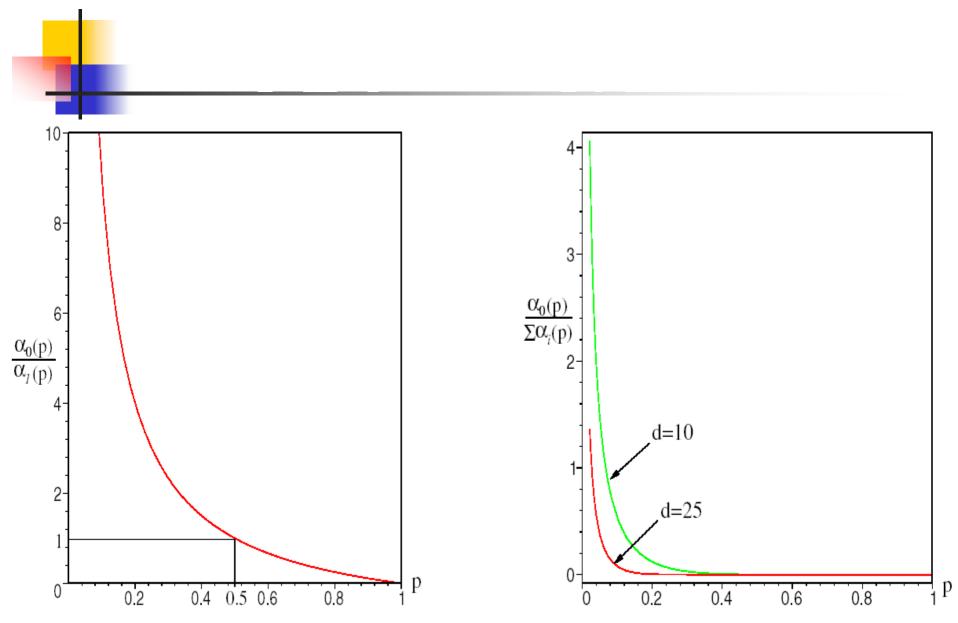
Probabilistic Marking

- Definition
- Path Sampling

$$\alpha_i(p) = \Pr\{x_d = (v_{i-1}, v_i)\} = p(1-p)^{d-i}.$$

Marking Field Spoofing

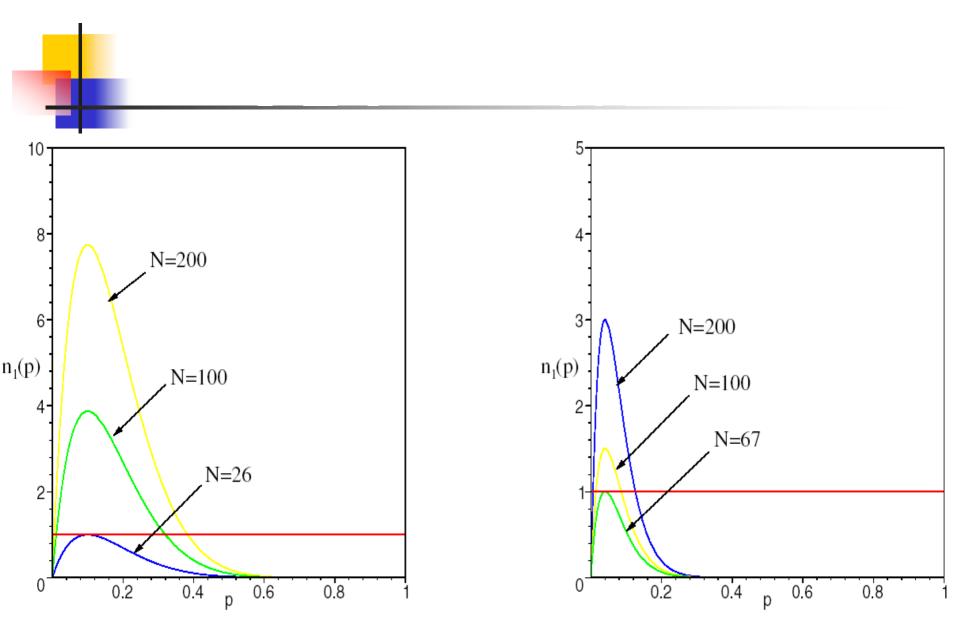
 $n_0(p) \ge n_1(p) \quad \Leftrightarrow \quad \alpha_0(p) \ge \alpha_1(p)$ $\Leftrightarrow \quad (1-p)^d \ge p(1-p)^{d-1} \quad \text{(III.1)}$ $\alpha_0(p) \ge \sum_{i=1}^d \alpha_i(p) \quad \Leftrightarrow \quad (1-p)^d \ge 1 - (1-p)^d$

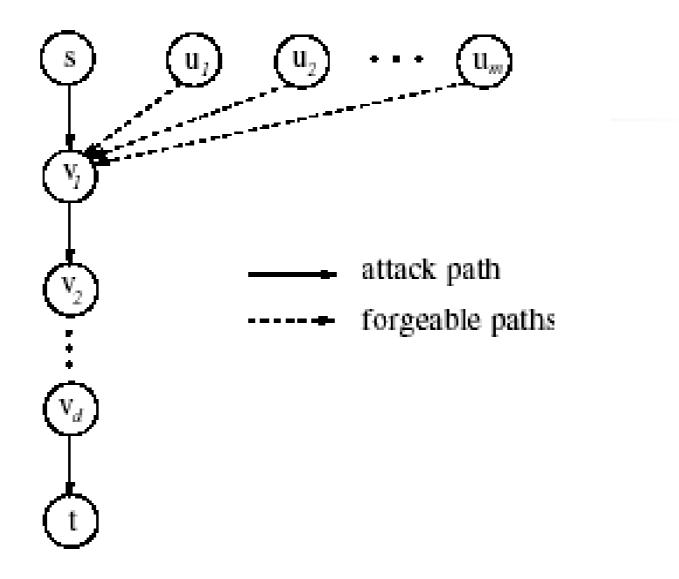


Probabilistic Marking(cont.)

Traceback Problem

$$\alpha_1(p) = \alpha_1^s(p) = \alpha_2^s(p) = \dots = \alpha_m^s(p)$$
$$N\alpha_1(p) = Np(1-p)^{d-1} \ge 1.$$
$$\min_{p} \max_{x_0, N} m(p, x_0)$$





Analysis of Single-Source DoS Attack

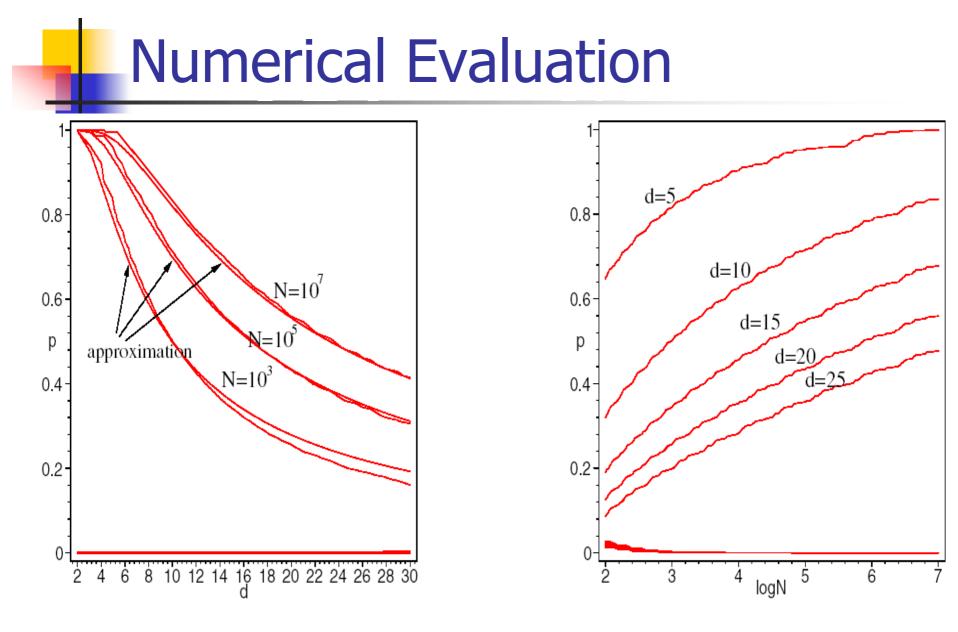
$$\begin{aligned} \Pr\{x_0 = (u_i, v_1)\} &= \frac{1}{m}, \quad i = 1, 2, \dots, m. \\ m \,\alpha_1(p) &= \alpha_0(p) \quad \Leftrightarrow \quad m \, p(1-p)^{d-1} = (1-p)^d \\ &\Leftrightarrow \quad m = \frac{1}{p} - 1 \end{aligned}$$

Approximation of Uncertainty Factor

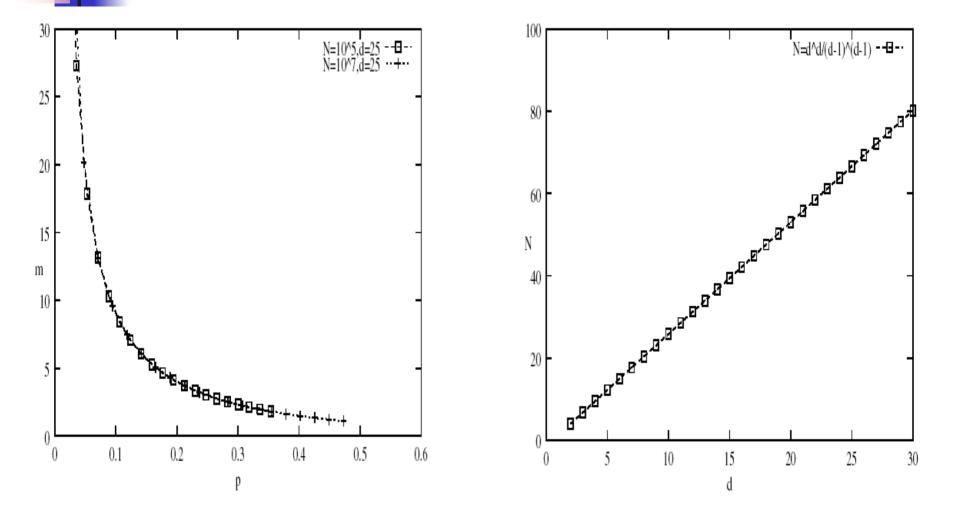
$$Np(1-p)^{d-1} \ge 1$$
:

$$\frac{1}{N} \le p \le 1 - \left(\frac{1}{N}\right)^{\frac{1}{d-1}}.$$

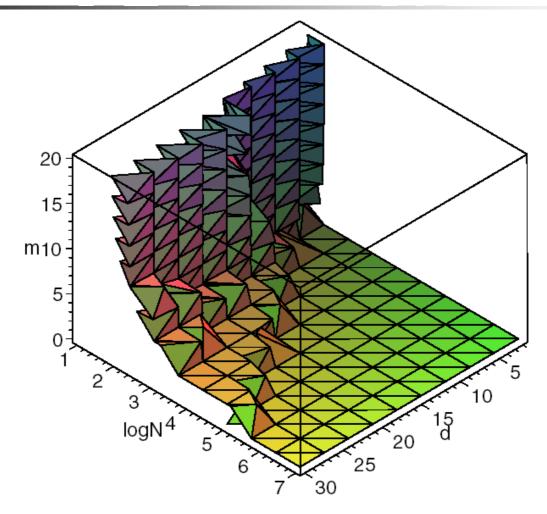
$$m \approx \frac{N^{-\frac{1}{d-1}}}{1 - N^{-\frac{1}{d-1}}}.$$



Numerical Evaluation



Numerical Evaluation



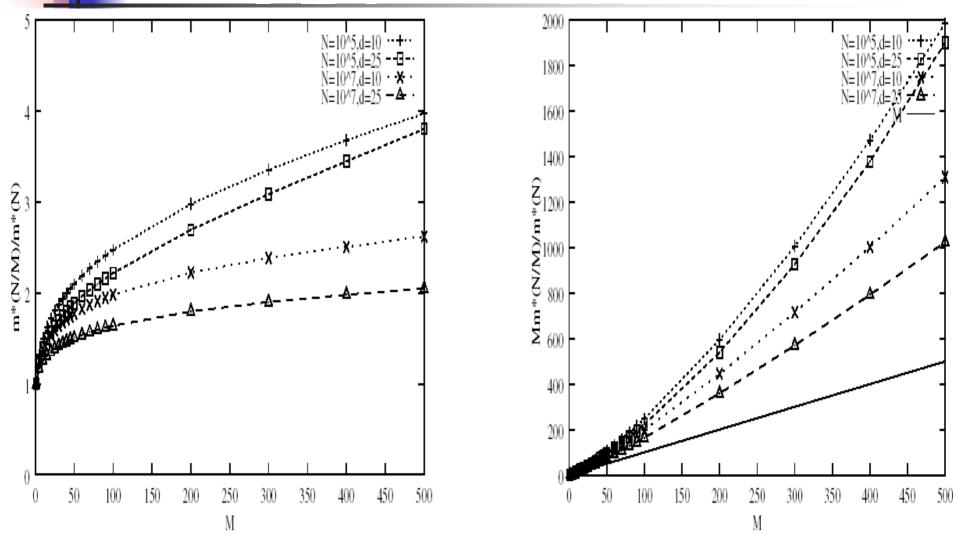
Distributed DoS Attack

Any-source traceback

$$\min_{1 \le i \le M} \left\{ \frac{\alpha_{i,0}(p)}{\alpha_{i,1}(p)} \right\} = \min_{1 \le i \le M} \left\{ \frac{(1-p)^{d_i}}{p(1-p)^{d_i-1}} \right\} = \frac{1}{p} - 1.$$

All-source traceback

$$\sum_{i=1}^{M} m^{i} = \sum_{i=1}^{M} \frac{\alpha_{i,0}(p)}{\alpha_{i,1}(p)} = \sum_{i=1}^{M} \frac{(1-p)^{d_{i}}}{p(1-p)^{d_{i}-1}} = M\left(\frac{1}{p}-1\right)$$



Conclusion

- This paper analyzed the effectiveness of PPM in a minimax adversarial context where the attacker is allowed to spoof the marking field to achieve maximum confusion at the victim.
- We can Choose a suitable marking probability to limit the attacker's ability.

Conclusion

- If we use different marking scheme, we may get different result.
- We can consider decreasing the marking probability by hop count.