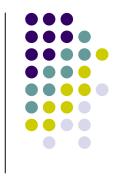

Power Control and Clustering in Ad Hoc Networks

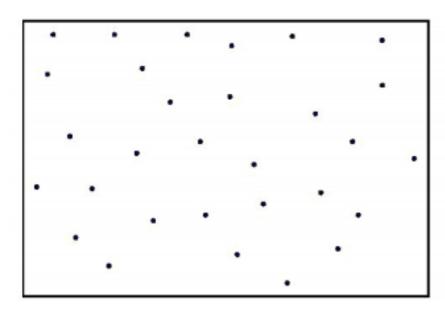
Vikas Kawadia and P. R. Kumar

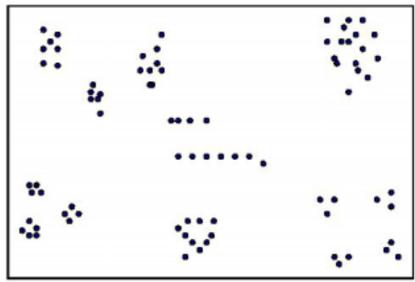
IEEE INFOCOM 2003



Introduction

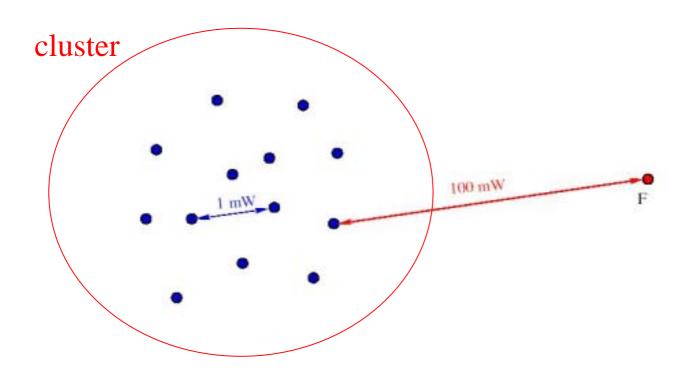
- Power control
 - How to choose the transmit power level for every packet
- Transmit power affects
 - Transmission range
 - Network topology and routing
 - Network capacity
 - Battery life
 - Packet end-to-end latency


Related Works



- Most work on power control can be classified into several categories:
 - Find an optimal transmit power
 - To control the connectivity of the network
 - COMPOW[2]
 - [3][4][5]
 - Power "aware" routing
 - Power based metric v.s. hop count based metric
 - [6][7][8][9]
 - Modifying the MAC layer
 - [10][11][12][13]

Homogeneous v.s. Non-homogeneous Networks



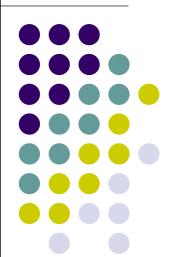
(a) Homogeneous spatial dispersion of nodes

(b) Nodes non-homogeneously dispersed

A common power level is not appropriate for non-homogeneous networks

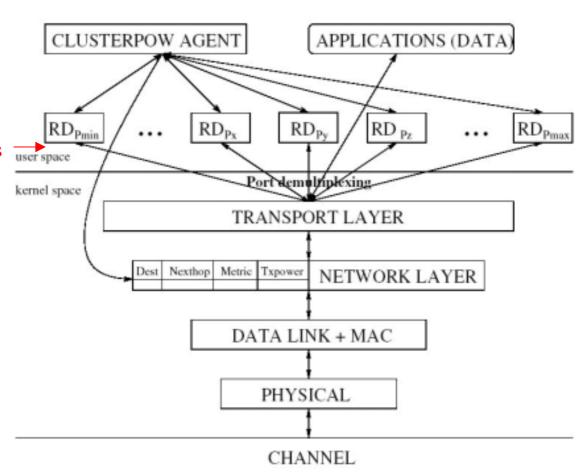
Clustering

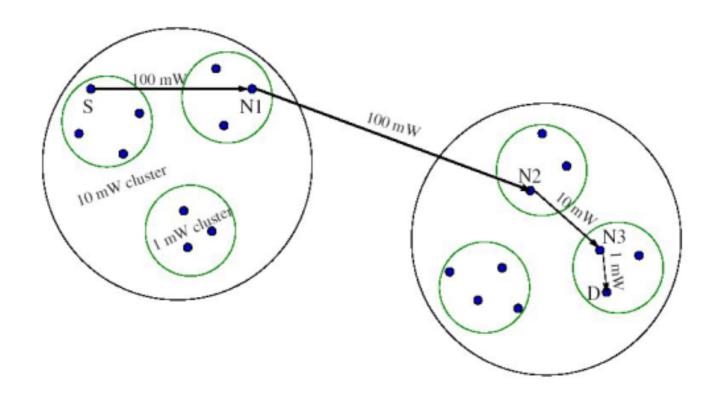
- Can reduce route discovery overhead
- Usually need a cluster_head election
- Connections between different clusters must through these cluster_heads

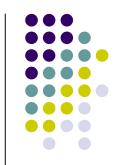

Goals

- Power control in conjunction with routing
- Providing dynamic and implicit clustering of nodes
 - Without election of leader or gateway nodes
- Propose three solutions:
 - Maximize network capacity
 - CLUSTERPOW
 - Tunnelled CLUSTERPOW
 - Minimize energy consumption
 - MINPOW

The CLUSTERPOW Power Control Protocol


- •A route in CLUSTERPOW
 - -Consists of hops of different transmit power
 - -The clustered structure of network is respected


Routing Daemons (corresponding to each power level P_i)


Routing by CLUSTERPOW in A Typical Non-homogeneous Network

- •First, using the maximum power p to find the route
- •Then, using the power which is *not larger than p* revise the route

Routing Tables for All Power Levels

Dest	NextHop	Metric	Dest	NextHop	Metric	Dest	NextHop	Metric
D		Inf	D		Inf	D	N1	3

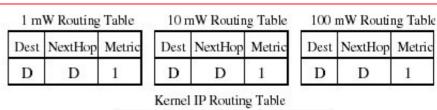
Dest

D

NextHop Metric TxPower

100 mW

1 m	W Routing	Table	10 r	nW Routin	g Table	100	mW Routi	ng Table
Dest	NextHop	Metric	Dest	NextHop	Metric	Dest	NextHop	Metric
D		Inf	D		Inf	D	N2	3


N1

Node N1

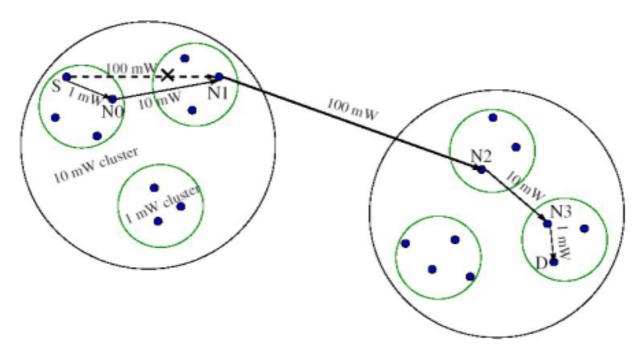
Node S

Dest	NevtHon		TxPower
223	N2		The state of the state of
D	N2	3	100 mW

1 m	W Routing	Table	10 n	nW R	outin	g Table	100	mW Routi	ng Table
Dest	NextHop	Metric	Dest	Next	Нор	Metric	Dest	NextHop	Metric
D		Inf	D	N	13	2	D	D	1
		n 5200	Kernel	IP Ro	outing	g Table	500		
Node N2		Dest	Dest Ne		Metric TxP		ower		
		D		N3	2	10 n	nW		

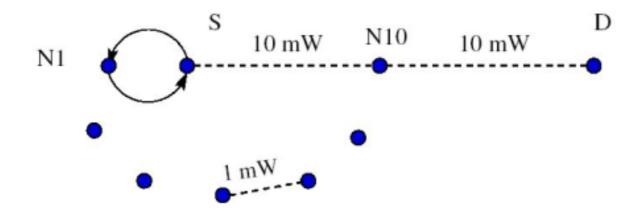
Node N3

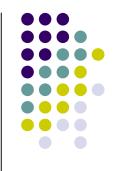
-			200.070.0
Dest	NextHop	Metric	TxPower
D	D	1	1 mW

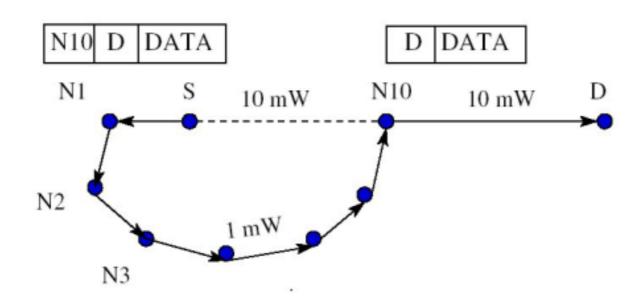

Properties of CLUSTERPOW

- The routes discovered consist of a nonincreasing sequence of transmit power levels
- COMPOW[2] is a special case of CLUSTERPOW
- CLUSTERPOW can be used with any routing protocol, reactive or proactive.
- CLUSTERPOW is loop free.

Modifying the CLUSTERPOW protocol




- •To increase network capacity
- •Using Recursive Lookup
 - •May be lead to packets getting into infinite loops



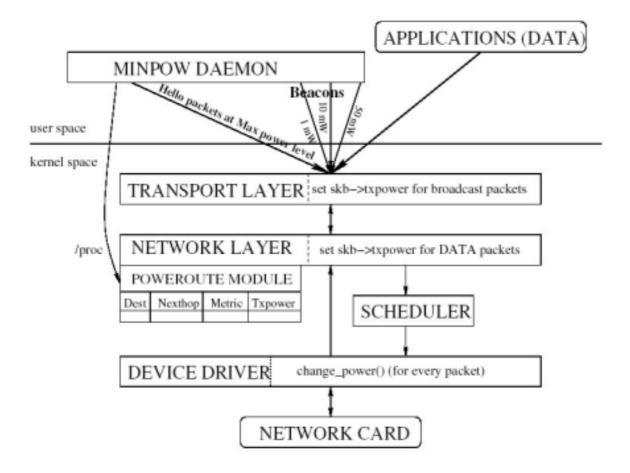
Using Tunnelled CLUSTERPOW

The MINPOW Routing and Power Control Protocol

MINPOW

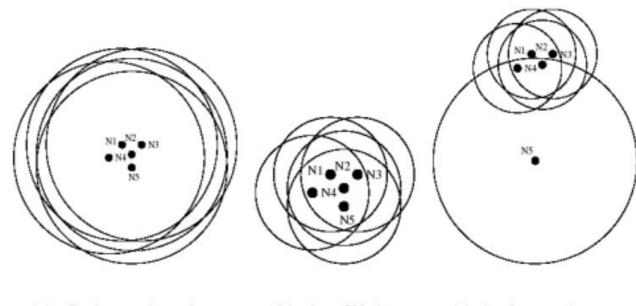
- To minimize the total power consumption
- Total power consumption as the cost
 - Instead of the hop count metric
- Any shortest path algorithm can be used
- Using "hello" packet
 - without requiring any support form the physical layer

Link Cost


- \bullet $P_{RX_{elec}}$: the power consumed in receiver electronics
- ullet P_{TXelec} : the power consumed by the transmitter electronics
- $P_{TXRad}(p)$: the power consumed by the power amplifier to transmit a packet at power level p

$$P_{Tx_{total}} = P_{Tx_{elec}} + P_{Tx_{Rad}}(p)$$

$$linkcost = \min_{beacons} (P_{Tx_{total}}) + P_{Rx_{elec}}$$


The software architecture of MINPOW

Some topologies for experimentation

(a) Co-located nodes at 100 mW.

(b) 1 mW is enough.

(c) A clustered network.

Summary

- CLUSTERPOW
 - Provides adaptive and distributed clustering based on transmit power.
- Tunnelled CLUSTERPOW
 - To increase network capacity
- MINPOW
 - To minimize the total power consumption

Discussion

- The throughput problem
 - using high power level
- The latency problem
 - using low power level
- Load adaptive power control?
- Sleeping
 - Important for current hardware
 - The decision to sleep cannot be relegated entirely to the MAC layer