Quality of Service Provisioning in WiMAX Networks: Chances and Challenges

Speaker: Jen-Chu Liu MNET Lab, CS, NTHU 2005.10.07

Outline

QoS in WiMAX

WiMAX QoS chances

WiFi / WiMAX QoS Integration

Discussion and conclusion

QoS in WiMAX

QoS in WiMAX: basics

Connection oriented

- QoS per connection
- all services are applied to connections
- managed by mapping connections to "service flows"
- bandwidth requested via signaling

QoS in WiMAX: basics (cont.)

- Three management connections per direction, per station
 - basic connection: short, time-critical MAC / RLC messages
 - primary management connection: longer, delay-tolerant messages
 - authentication, connection setup, etc.
 - secondary management connection: e.g. DHCP, SNMP
- Transport connections
 - unidirectional; different parameters per direction

QoS in WiMAX: services

- Four types of scheduling service
 - Unsolicited Grant Service (UGS)
 - for real-time flows, periodic fixed size packets
 - e.g. VoIP or ATM CBR
 - Real-Time Polling Service (rtPS)
 - for real-time service flows, periodic variable size data packets
 - e.g. MPEG
 - Non-Real-Time Polling Service (nrtPS)
 - for non real-time service flows with regular variable size bursts
 - e.g. FTP or ATM VBR-NRT
 - Best Effort (BE)
 - for best effort traffic
 - e.g. UDP or ATM UBR

QoS in WiMAX: services (cont.)

- Specified via QoS parameters
 - max. sustained traffic rate (MSR)
 - min. reserved traffic rate (MRR)
 - max. latency
 - max. jitter
 - priority
 - vendor specific parameters

Bandwidth request and allocation (1)

- Subscriber Stations (SSs)may request bandwidth (bw) in 3 ways:
 - Use the "contention request opportunities" interval upon being polled by the BS (multicast or broadcast poll).
 - Send a standalone MAC message called "BW request" in an allready granted slot.
 - Piggyback a BW request message on a data packet.

Bandwidth request and allocation (2)

- BS grants/allocates bandwidth in one of two modes:
 - Grant Per Subscriber Station (GPSS)
 - Grant Per Connection (GPC)
- Decision based on requested bw and QoS requirements vs. available resources.
- Grants are realized through the UL-MAP.

Unicast Polling

- 1. BS allocates space for the SS in the uplink subframe.
- 2. SS uses the allocated space to send a bw request.
- BS allocates the requested space for the SS (if available).
- 4. SS uses allocated space to send data.

QoS architecture of WiMAX

A new QoS architecture of WiMAX [5]

WiMAX QoS chances [3]

Bad ideas for 802.16 QoS

- Support for end-to-end QoS across the Internet
 - Never happened, and probably never will
- 802.16 QoS as replacement for IP QoS
 - QoS must be preserved at all layers
- Complicated QoS configurations
 - Simple ones suffice to support IP traffic
 - QoS configuration errors / software bugs are often reasons for failure

What can 802.16 QoS do for us?

- Nowadays, IntServ, DiffServ, MPLS are traffic management tools
 - e.g. protect TCP traffic from UDP
 - reasonable when overprovisioning is not a solution (i.e. it is more expensive or impossible)
- IP QoS does not work with incompatible link layers
- Classifier in 802.16: assign IP packets to "service flows"
 - can use destination address, source address, protocol, DSCP
 - DSCP QoS association: "glue" between 802.16 QoS and IP QoS
 - enables DiffServ

WiFi/WiMAX QoS Integration

Inter-system QoS guarantees

QoS integration challenges

- connection-oriented (WiMAX) vs. contentionbased (WiFi)
- QoS parameters mapping
 - Should define three QoS mapping interfaces
 - WiFi to Internet
 - WiFi to WiMAX
 - WiMAX to Internet

QoS mapping

Discussion and Conclusion

- We need a good signaling protocol to setup the QoS connection
 - SIP
 - Soft state RSVP [6]
 - Prediction and resource reservation
- QoS must be preserved at all layers
 - Vertical QoS mapping and horizontal QoS mapping
- QoS with Mobility

References

- [1] IEEE Std. 802.16-2001 IEEE Standard for Local and MANPart16:Air Interface for Fixed Broadband Wireless Access Systems, IEEE Std 802.16-2001, 2002.
- [2] Michael Welzl, Max Mühlhäuser: "Scalability and Quality of Service: a Trade-off?", IEEE Communications Magazine Vol. 41 No. 6, June 2003
- [3] http://www.upperside.fr/wimax05/wimax2005intro.htm, WiMAX SUMMIT 2005, Paris, April 5~8, 2005
- [4] G. Huston: "Next Steps for the IP QoS Architecture", RFC 2990
- [5] D. H. Cho, J. H. Song, M. S. Kim and K. J. Han, "Performance Analysis of the IEEE 802.16 Wireless Metropolitan Area Network," Proceedings of the First International Conference on Distributed Frameworks for Multimedia Applications, 2005.
- [6] W. T. Chen and L. C. Huang, "RSVP mobility support: a signaling protocol for integrated services Internet with mobile hosts," INFOCOM 2000, 26-30 March 2000.
- [7] http://www.wirelessnetdesignline.com/