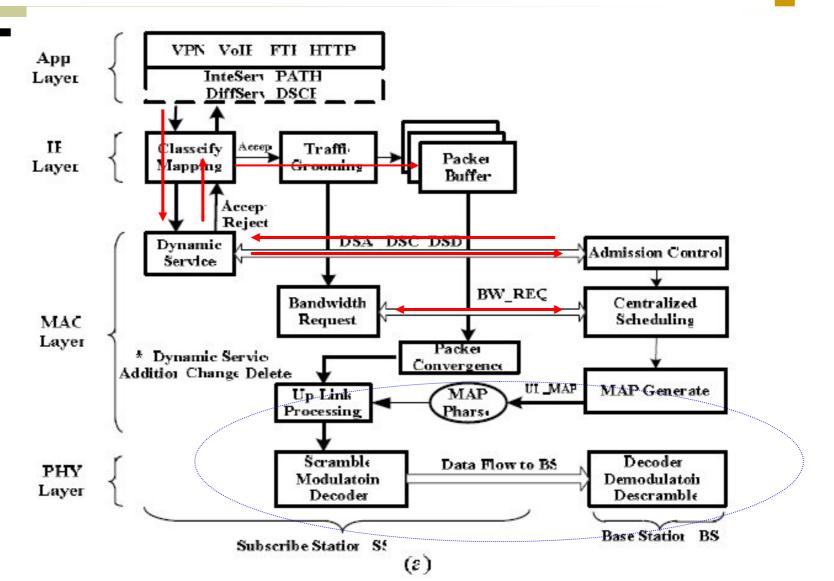
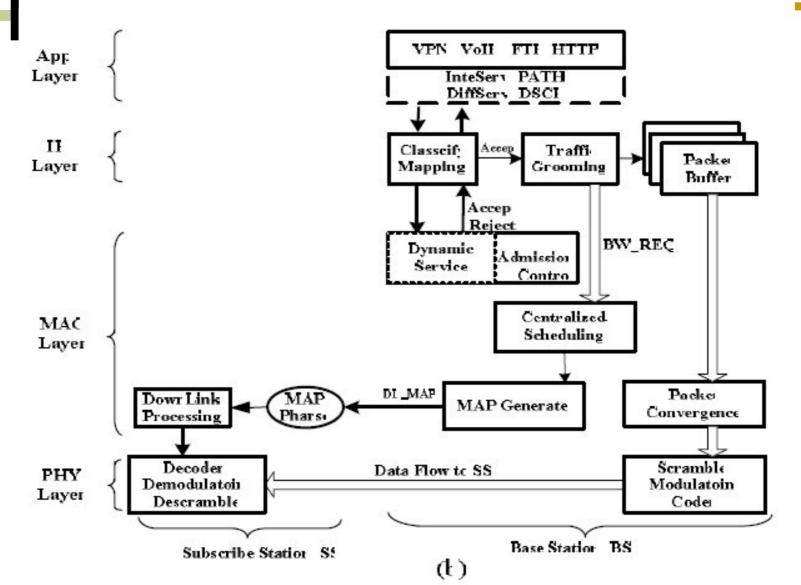
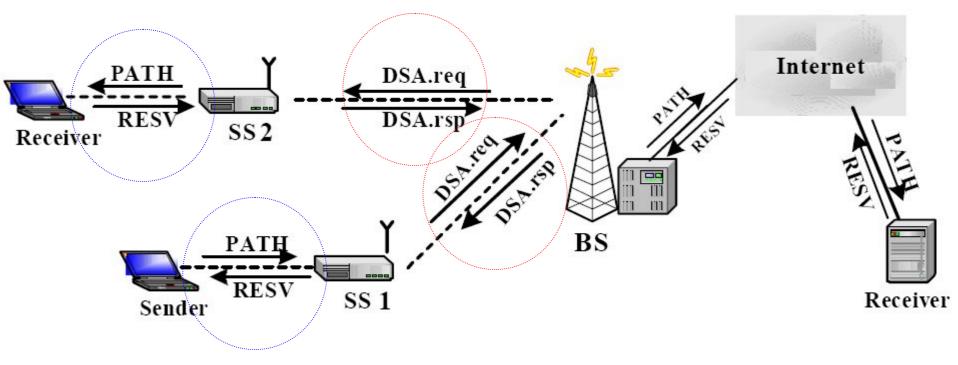
An Integrated QoS Control Architecture for IEEE 802.16 Broadband Wireless Access Systems


GLOBECOM 2005

Speaker: Jen-Chu Liu


Introductions

- This paper proposes a new integrated QoS architecture for IEEE 802.16-2004.
 - A multi-layer architecture
 - Guarantee different level QoS
 - Prioritize the traffic classes
 - Adjust resource allocation dynamically
 - Share resources fairly


The Multi-layer Integrated QoS Control Architecture – Uplink Traffic

The Multi-layer Integrated QoS Control Architecture – Downlink Traffic

Traffic Classification and Mapping for IntServ Services

Traffic Class	Bandwidth Requirements	Delay / Jitter / Loss Rate	MAC layer Services
Hard QoS guarantee(eg. VPN tunnel, Leased line E1/T1)	Constant bandwidth	Minimum packet delay, jitter and loss rate	Unsolicited Grant Service
Soft QoS guarantee(eg. VoIP, VOD,	Guaranteed	Regular delay, jitter require	Real-Time Polling Service
digital TV, FTP, gaming.)	Not guaranteed	long delay, jitter require	Non-Real-Time Polling Service
Best effort (eg. HTTP)	Only basic connection	N/A	Best Effort

TABLE I. Mapping Rules for IntServ Services


TABLE II. Mapping Rules for DiffServ Services

Traffic Class	Service Description	DS Octet (DS5-3)	MAC layer Services				
Hard QoS guarantee(eg. VPN tunnel, Leased line E1/T1)	Critical	101	Unsolicited Grant Service				
Soft QoS guarantee(eg. VoIP, VOD,	Flash, Immediate	100 / 011/010	Real-Time Polling Service				
digital TV, FTP, gaming.)	Priority,	001	Non-Real-Time Polling Service				
Best effort (eg. HTTP)	Runtime	000	Best Effort				

Differentiated Services Code Point

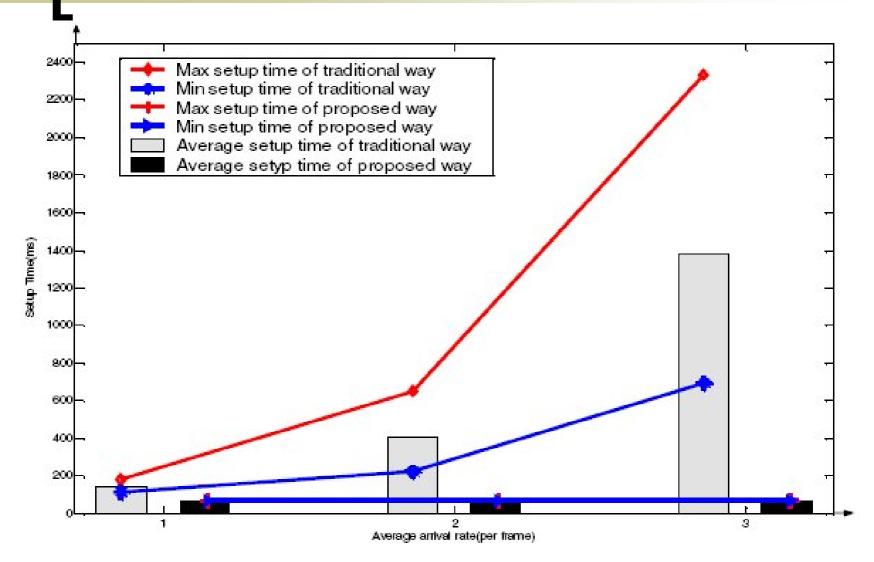
ToS	P2	P1	P0	T3	T2	T1	T0	Zero
DS	DS5	DS4	DS3	DS2	DS1	DS0	ECN1	ECN0
Octet	(Class Selector)		(Drop Precedence)					

Hierarchical Structure of Bandwidth Allocation (for BS)

TABLE III	Traditional way	of RSVP
SS		BS
1: Received PATH		
Check if resource are available		
Update the state, Send PATH	PATH →	2: Received PATH Check whether IP QoS are
		available;Update the state Transfer PATH to next hop
		3: Received RESV
		Reserve Resource of IP QoS
4: Received RESV Reserve Resource	← RESV	Transfer RESV
Map QoS from IP MAC Send DSA-REQ	DSA-REQ →	5: Received DSA-REQ
Selid DSA-ICLQ	DSA-ICLQ	MAC Admission Control
6:Received DSA-RSP Transfer RESV to previous hop	←DSA-RSP	Send DSA-RSP

TABLE IV Proposed way of RSVP

IADLE IV	rioposed way	
SS	E	BS
1: Received PATH Check if resource are available MAC layer QoS mechanism Map PATH to MAC QoS Send DSA-REQ	DSA-REQ →	2: Received DSA-REQ MAC Admission Control Send DSA-REQ to next hop
4:Received DSA-RSP Map DSA-RSP to RESV RESV received by IP Layer Transfer RESV to previous hop	DSA-RSP←	3: Received DSA-REQ from the next hop MAC Admission Control Send DSA-RSP



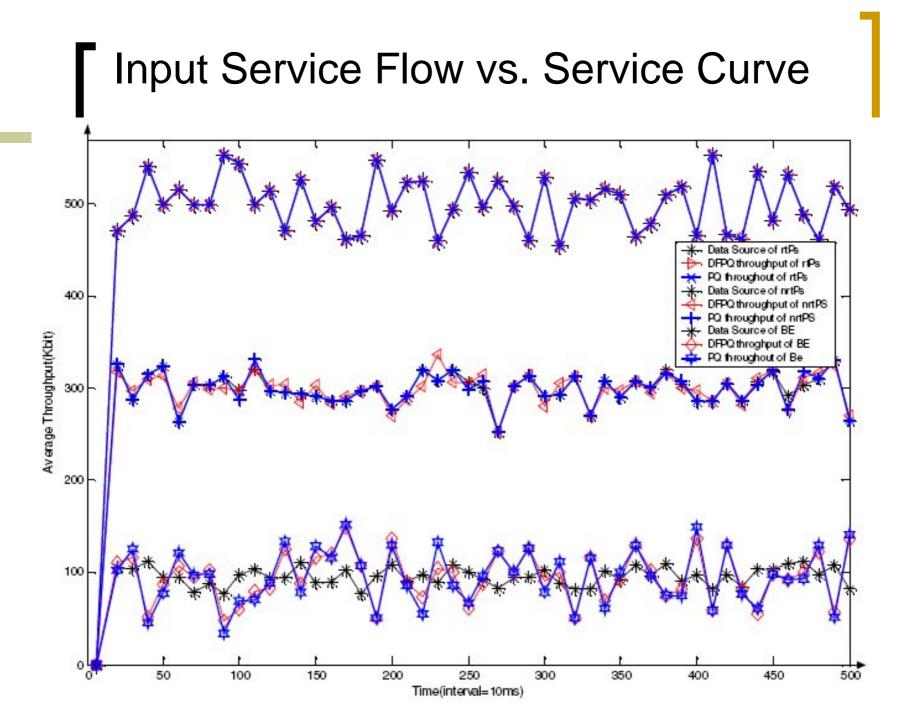
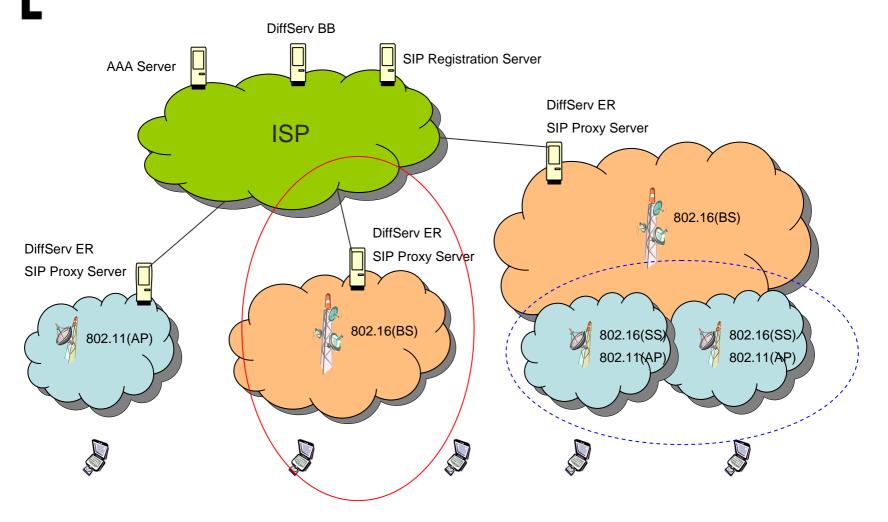
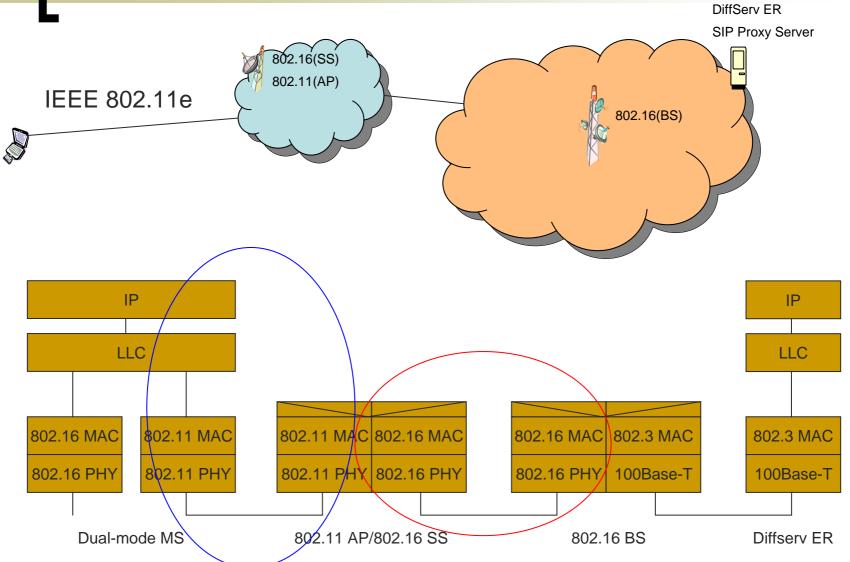

PATH m	lessage	RESV	message
$\Delta_{M Send} = 10 \mathrm{ms}$	$\Delta_{MP} = 10 \text{ms}$	$\Delta_{MR} = 20 \text{ms}$	$\Delta_{M Rec} = 20 \mathrm{m}$

TABLE VI Input Service Flow


Service Type	Mapped Type	CID	Average Bandwidth	Max. Delay	Max.sustained traffic rate	Min.reserved rate
1658-1961 1			(Kbit)	(ms)	(Kbit)	(Kbit)
		1	10	60	12	8
VoIP DL_rtPS	2	10	40	12	8	
	3	10	20	12	8	
VoIP UL_rtPS	4	7	70	8.4	5.6	
	5	7	50	8.4	5.6	
	2 <u></u> 2	6	6	30	7.2	4.8
		7	6	100	6	4
FTP	DL_nrtPS	8	6	100	5	4
	9	6	100	5	4	
	10	4	100	6	4	
FTP	UL_nrtPS	11	4	100	5	4
6.3 mps. 43	12	4	100	5	4	
HTTP DL_BE	13	2	240		1.6	
	DL_BE	14	2	240	-	1.6
	15	2	240	-	1.6	
3	02	16	2	300	-	1.6
HTTP	UL_BE	17	1	300	-	0.8
	108 MG - 201	18	1	300	-	0.8

Setup Time vs. Arrival rate



Discussions

Discussions

Summaries

- This paper proposed an architecture to provide multi-layer QoS control for IEEE 802.16-2004.
- Both IntServ and DiffServ are supported.