Ad Hoc Positioning System (APS) Using AOA

Dragos Niculescu and badri nath IEEE INFOCOM 2003

Chen Po Yu 2003.05.01

Outline

- Introduction
- Ad hoc Positioning System (APS)
- Angle of Arrival (AOA) theory
- Ad hoc positioning system algorithm
- Simulation result
- Discussion
- Conclusion

Introduction

- Position information of individual nodes is useful for routing in ad-hoc networks.
 - Location-aided routing
 - geocast
- Finding location without the aid of GPS in each node of an ad hoc network is important.
 - Cost
 - Accessible
 - Limited power
 - Light of sight

Introduction

- Location would also enable routing in sufficiently isotropic networks without the use of large routing tables.
- How to determine orientation and position of all nodes in an ad hoc network where only a fraction of the nodes have positioning capabilities.

Introduction

We can derive position information by measuring

Time difference of arrival (TDOA)
Cricket[2], AhLOS[3]

Signal strength

RADAR[4], APS[5]

Angle of arrival (AOA)

Ad hoc Positioning System (APS)

- APS is used in sensor networks
 - Low power nodes
 - Low mobility
 - Large size
- The design goal of APS
 - Routing without the use of large conventional routing tables.
- APS algorithm is a distributed, hop by hop positioning algorithm.

Ad hoc Positioning System (APS)

- APS works as extension of both distance vector and GPS positioning.
- APS is appropriate for indoor location aware applications.

- AOA sensing requires either an antenna array or several ultrasound receivers.
 - The angle of arrival is as shown in fig. 2[6]
- Any node can only communicate directly with its immediate neighboring nodes within radio range.
- Nodes
 - Landmarks
 - Regular nodes

- Bearing
 - An angle measurement with respect to another object.
- Radial
 - A reverse bearing
 - Radial = pi bearing
- Heading
 - Bearing to north

Problem

- Given imprecise bearing measurements to neighbors
- Find headings and positions for all nodes in the networks.

->a=pi-ba-ab+b

Ad hoc positioning system algorithm

- The propagation method is similar with the distance vector routing.
 - Each node only communicates with its immediate neighbors
 - In each message exchange it communicates its available estimates to landmarks acquired.
- The algorithm is to use hop by hop propagation capability of the network to forward
 - distances (original APS)
 - orientation=bearing, radial or both.
 - to landmarks.

Ad hoc positioning system algorithm

Distance vector Bearing

which allows each node to get a bearing to a landmark.

Distance vector Radial

- which allows a node to get a bearing and radial to a landmark.
- We assume that compasses are available in nodes.

Ad hoc positioning system algorithm

Fig. 5. Node A infers its bearing to L by corroborating B's and C's bearings to L

Find deg(a)? deg(a) =deg(c) + deg(LAC)

Simulation model

- 1000 nodes
- Degree=10.5
- Diameter=32
- A fraction of nodes are landmarks
- DV bearing: TTL=5
- DV radial: TTL=4
- Performance will be evaluated based on
 - The accuracy of positioning for non-landmark nodes
 - Accuracy of heading
 - Percentage of the regular nodes which succeed the solving for a position

Position error

Fig. 11. Positioning error

Bearing error

The average error of the bearing to landmarks

Heading error

The angle between nodes axis and the north

Coverage

The percentage of non landmark nodes which are able to resolve for a position

Hardware requirement

Signaling overhead

- TTL / per landmark
- Signaling-accuracy tradeoffs

compass	method	signaling	accuracy
nowhere	DV-Bearing	less	less
only at	DV-Bearing	less	less
landmarks	DV-Radial	more	more
all nodes	DV-Radial	less	more

Network density

Fig. 6. Probability for a node to satisfy conditions necessary for orientation forwarding

Error control

- Bearing propagation
- The author think that the error control is lightweight due to the environment is
 - Low power
 - Low communication capacities nodes
 - **.**...

Solutions

- Limited TTL
- To avoid to deal with small angle (angle threshold)

Node mobility

In this paper, the network topology is static.

When a moves,

it will get DV updates form its new neighbors.

When a landmark moves,

- It will cause a communication surge in this approach.
- The only things that identify a landmark are its coordinates.

Conclusion

- The author extends the original APS with distance measurement to angle measurement (APS with AOA).
- Two algorithms are proposed
 - DV-bearing
 - DV-radial
- The performance of DV-radial is better than DV-bearing
- But the signaling overhead of DV-radial is higher than DV-bearing.