A survey of solutions to the coverage problems in wireless sensor networks

Po-Yu Chen Multimedia Network Lab. NTHU

Outline

- Introduction
- Related Geometric Problems
- Surveillance and Exposure part-1
- Discussion
- Coverage and Connectivity part-2

Introduction

• Sensor networks

Introduction

- Design issues
 - PHY and MAC Layers
 - Routing and Transport Protocols
 - Localization and Positioning applications
 - Coverage and Connectivity Problems

Related Geometric Problems

- Art Gallery Problem
 - How many cameras are needed
 - Where these cameras should be deployed
- The galley is usually modeled as a simple polygon on <u>2D</u> plane
- Simple solution
 - Triangulating the polygon
 - Number of cameras = n/3

Art Gallery Problem

Related Geometric Problems

- Circle Covering Problem
 - To arrange identical circles on a plane that can fully cover the plane
 - Given a fixed number of circles, the goal is to minimize the radius of circles

Circle Covering Problem

Surveillance and Exposure

- To find a path connecting these two points which is best and worst monitored by sensors
- Maximal branch path [1][5]
 - The distance form any point to the closest sensor is <u>maximized</u>
- Maximal support path [1][5]
 - The distance form any point to the closest sensor is <u>minimized</u>

Surveillance and Exposure

- How to fine these paths?
 - Voronoi diagram
 - Maximum branch paths
 - Delaunay triangulation
 - Maximum support paths

Voronoi diagram

Maximum branch paths

Delaunay triangulation

Maximal branch path (P_B)

Step 1: Generate Voronoi diagram for sensor S in field A

Step 2: Apply graph theory abstraction

Step 3: Find *P_B* using Binary-Search and Breadth First-Search

Maximal branch path (P_B)

- Generate Bounded Voronoi diagram for S with vertex set U and
- line segment set L.
- Initialize weighted undirected graph G(V,E)
- **FOR** each vertex $ui \in U$
- Create duplicate vertex vi in V
- FOR each *li*(*uj*,*uk*)∈*L*
- Create edge *ei*(*vj*,*vk*) in E
- Weight(ei)=min distance from sensor $si \in S$ for $1 \le I \le |S|$
- min_weight = min edge weight in G
- max_weight = max edge weight in G
- range = (max_weight min_weight) / 2
- breach_weight = min_weight + range
- WHILE (range > binary_search_tolerance)
- Initialize graph G'(V',E')
- **FOR** each $vi \in V$
- Create vertex vi' in G'
- **FOR** each *ei*∈*E*
- IF Weight(ei) ≥ breach_weight
- Insert edge ei' in G'
- range = range / 2
- IF BFS(G', I, F) is Successful
- breach_weight = breach_weight + range
- ELSE
- breach_weight = breach_weight range
- END IF

Maximal branch path (P_B)

Maximal support path (P_s)

Step 1: The Voronoi diagram is replaced by the Delaunay triangulation as the underlying geometric structure

Step 2: The edges in graph *G* are assigned weights equal to the length of the corresponding line segments in the Delaunay triangulation

Step 3: The search parameter *breach_weight* is replaced by the new parameter *support_weight*.

Maximal support path (P_s)

Surveillance and Exposure

Surveillance and Exposure

- <u>Exposure</u>: the sensing ability of sensors can be improved as the sensing time increases
 - Minimal exposure path [1][2][6][7]
 - Worst coverage of a sensor network
 - Maximal exposure path [1][3]
 - Best coverage of a sensor network
- They also use voronoi diagram and delaunay triangulation to partition the sensing filed

Example of exposure

Sensor models

• For a sensor s, we express the general sensibility model S at an arbitrary p as

Sensor field intensity

- Depending on the application and the type of sensor models, the sensor field intensity can be defined in several ways
- Two used models
 - All-Sensor Field Intensity: I_A
 - Closest-Sensor Field Intensity: I_C

Sensor field intensity

- All-Sensor Field Intensity
 - Assume there are n active sensors, s_1 , s_2 , s_3 ,... s_n

$$I_A(F,p) = \sum_{i=1}^{n} S(s_i,p)$$

Closest-Sensor Field Intensity

$$s_{\min} = s_m \in S | d(s_m, p) \le d(s, p) \forall s \in S$$
$$I_C(F, p) = S(s_{\min}, P)$$

Minimal Exposure

 The exposure for an object O in the sensor field during the time interval [t₁, t₂] along the path p(t) is defined as

$$E(p(t), t_1, t_2) = \int_{t_1}^{t_2} I(F, p(t)) \left| \frac{dp(t)}{dt} \right| dt$$

• If p(t) = (x(t), y(t))

$$\left|\frac{dp(t)}{dt}\right| = \sqrt{\left(\frac{dx(t)}{d(t)}\right)^2 + \left(\frac{dy(t)}{d(t)}\right)^2}$$

Minimal Exposure

- Example of exposure
 - How to travel from p(1, 0) to q(X, Y) with minimum exposure?

$$E = \int_{0}^{1} \frac{1}{\sqrt{x(t)^{2} + y(t)^{2}}} \sqrt{\left(\frac{dx(t)}{dt}\right)^{2} + \left(\frac{dy(t)}{dt}\right)^{2}} dt$$

(0, 1)

- When q=(0, 1), the minimum exposure path is

$$\left(\cos\frac{\pi}{2}t,\sin\frac{\pi}{2}t\right)$$
- The exposure along the path is E = $\pi/2$ (0,1)
(0,1)

Variational calculus [2]

– Using Polar Coordinates (ρ , θ)

$$E(x(t), y(t), t_1, t_2) = \int_{t_1}^{t_2} I(x(t), y(t)) \sqrt{\left(\frac{dx(t)}{dt}\right)^2 + \left(\frac{dy(t)}{dt}\right)^2} dt$$
$$x(t) = \rho(t) \cos \theta(t)$$

$$y(t) = \rho(t) \sin \theta(t)$$

$$E(\rho(t),\theta(t),t_1,t_2) = \int_{t_1}^{t_2} I(\rho(t),\theta(t)) \sqrt{\left(\rho\frac{d\theta(t)}{dt}\right)^2 + \left(\frac{d\rho(t)}{dt}\right)^2} dt$$
$$E(\rho(t),\theta(t),t_1,t_2) = \int_{\theta(t_1)}^{\theta(t_2)} I(\rho(t),\theta(t)) \sqrt{\left(\rho(t)\right)^2 + \left(\frac{d\rho(t)}{d\theta(t)}\right)^2} d\theta(t)$$

 Gener al case : k>1

• Critical angle for 1/r^k

$$\alpha_c(k) = \frac{\pi}{k-1}$$

• If the angle $\alpha > \alpha_c$, the minimal exposure path always extends infinity

- Maximal exposure path [3][5][6][7]
 - \rightarrow Best coverage problem
 - To find a path connecting two points (s, t) which maximize the smallest obserability of all points on the path.

- Centralized algorithm [5][6][7]
 - Voronoi diagram
 - Delaunary triangulation
- Distributed algorithm [3]
 - Localized Delaunary Triangulation
 - Gabriel Graph (GG)
 - Relative Neighborhood Graph (RNG)

- All wireless nodes S together define a unit disk graph UDG(S)
 - $-N_k(u)$: k-local nodes of u. K=1 or 2

• Unit Delaunay trangulation

 $UDel(S) = Del(S) \cap UDG(S)$

then

UDel(S) = GG(S): Gabriel Graph

- Localized Delaunay triangulation contains UDel(S) as a sub-graph
- RNG(S): a sub-graph of GG(S)

- Starting point s, Ending point t
 - Closest sensor u_s, u_t
- Construct RNG using 1-hop local information

- Assign each edge uv weight $\frac{1}{2} \|uv\|$
- The maximal exposure path has the minimum weight amoung all path connecting u_s and u_t

Summary

Surveillance (QoS)

- It is a far-and-near problem

- Exposure
 - How well an object, moving on an arbitrary path, can be observed by the sensor network over a period of time
- Sensing model
 - The sensing ability will decrease with distance
 - Communication range = sensing range

Discussion

- Worst coverage problem (minimal exposure path) with distribution method?
- Probability based sensing model
 A node is sensed with a probability P.
- Is sensing region always a circle?
- Coverage preserving and Energy conserving

 Critical density [1]
 - Coverage and connectivity [8][9]
- Sensing range vs. Communication range

References

- [1] S. Adlakha and M. Srivastava. Critical density thresholds for coverage in wireless sensor networks. In *IEEE Wireless Communications and Networking Conf.* (WCNC), pages 1615 – 1620, 2003.
- [2] Q. Huang. Solving an open sensor exposure problem using variational calculus. Technical Report WUCS-03-1, Washington University, Department of Computer Science and Engineering, St. Louis, Missouri, 2003.
- [3] X.-Y. Li, P.-J. Wan, and O. Frieder. Coverage in wireless ad hoc sensor networks. *IEEE Trans. Comput.*, 52(6):753–763, June 2003.
- [4] B. Liu and D. Towsley. On the coverage and detectability of wireless sensor networks. In *WiOpt'03: Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks*, 2003.
- [5] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava. Coverage problems in wireless ad-hoc sensor networks. In *IEEE INFOCOM*, pages 1380– 1387, 2001.
- [6] S. Meguerdichian, F. Koushanfar, G. Qu, and M. Potkonjak. Exposure in wireless ad-hoc sensor networks. In Proceedings of the 7th International Conference on Mobile Computing and Networking (MobiCom '01), Rome, Italy, (Best Student Paper Award), pages 139-150, July 2001.
- [7] S. Megerian, F. Koushanfar, G. Qu, G. Veltri, and M. Potkonjak. Exposure in wireless ad-hoc sensor networks: Theory and practical solutions. Journal of Wireless Networks, 8(5):443{454, September 2002. ACM Kluer Academic Publishers.

References

- [8] S. Shakkottai, R. Srikant, and N. Shroff. Unreliable sensor grids: coverage, connectivity and diameter. In *IEEE INFOCOM*, pages 1073 1083, 2003.
- [9] H. Zhang and J. C. Hou. Maintaining sensing coverage and connectivity in large sensor networks. In NSF International Workshop on Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks, 2004.