Wakeup Scheduling in Wireless Sensor Networks

MobiHoc 2006

2006.09.21

Outline

- Introduction
- Network and Traffic Model
- Wakeup Patterns
- Multi-Parent Method
- Evaluation and Comparison
- Conclusions
- Discussions

Introduction

- The network lifetime is based on the average power consumption of sensor nodes.
- Several sleep scheduling schemes are proposed to increase longevity of sensor networks.

Transmit > Receive > Idle >> Sleep

Power consumption is reduced by these schemes but delivery latency is increased.

Introduction

- Scheduled wakeups
 - Wakeup patterns
- Wakeup on-demand
 - Out-of-band wakeup
 - Two wireless interfaces
 - 1. Paging or signaling
 - 2. Data transmission

Network and Traffic Model

Network and Traffic Model

Channel sniffing and wakeup Based on measuring the received signal strength

For Chipcon CC1100 radio (315, 433, 868 and 915 MHz)

P_{wakeup} = 15uA * 3V * 86400s = 3.9J/day (~ 21Mbits)

Time synchronization
 Network topology

 Dense deployment
 Reliable links

- N: number of nodes in the network
- L_k : the set of nodes in level k
- h: maximum number of levels
- D.: forward delay
- D₄: backward delay
- T: the period of wakeup pattern

Effective wakeup period: $T_{eff} = \lim_{\tau \to \infty} \frac{\tau}{N_{\tau}}$ Effective wakeup rate: $R_{eff} = \frac{1}{T_{eff}}$ Power consumption: $P_{wakeup} = \frac{E_0}{T_{eff}} = R_{eff}E_0$

7

Wakeup Patterns

```
(1) Fixed-power case:
```

$$P_{wakeup} = 0.5E_0 \Longrightarrow T_{eff} = 2s$$

$$E_0 = 3V \times 15 \ \mu C = 45 \ \mu J \ / \ s$$

(2) Fixed-delay case:

 $\max(D_{\scriptscriptstyle \triangleright}, D_{\scriptscriptstyle \triangleleft}) \leq 1$

•Full battery capacity: $(2.4 \times 10^8)E_0$

•h= 4 hops

Full Synchronization Pattern --S-MAC

(1) $\mathbf{D}_{\triangleright}, \mathbf{D}_{\triangleleft} \sim \mathbf{U}[6, 8] \Rightarrow \max(\mathbf{D}_{\triangleright}, \mathbf{D}_{\triangleleft}) = 8s$

(2) $T_{eff} = 250 \text{ms}, P_{wakeup} = 4E_0$, Lifetime = 23.1 months

P-Y Chen

Shifted Even and Odd Pattern

- (1) $\mathbf{D}_{\triangleright}, \mathbf{D}_{\triangleleft} \sim \mathbf{U}[3, 5] \Rightarrow \max(\mathbf{D}_{\triangleright}, \mathbf{D}_{\triangleleft}) = 5s$
- (2) $T_{eff} = 400$ ms, $P_{wakeup} = 2.5E_0$, Lifetime = 37 months

Ladder Pattern (Forward)

Two-Ladders Pattern --Forward + Backward

Nodes in the middle levels wakeup twice in every period T

$$\mathbf{D}_{\triangleright}, \mathbf{D}_{\triangleleft} \sim \mathbf{U} \left[(h-1)\tau, \ 2T_{\text{eff}} + (h-1)\tau \right]$$
$$\mathbb{E}(\mathbf{D}_{\triangleright}) = T_{\text{eff}} + (h-1)\tau.$$

(1) $\mathbf{D}_{\triangleright}, \mathbf{D}_{\triangleleft} \sim \mathbf{U}[0.15, 4.15] \Rightarrow \max(\mathbf{D}_{\triangleright}, \mathbf{D}_{\triangleleft}) = 4.15s$

(2) $T_{eff} = 425$ ms, $P_{wakeup} = 2.35E_0$, Lifetime = 39.3 months

Crossed-Ladders Pattern

- Cross point can be any of the middle levels
- Full cycle = (h-1)WT

$$T_{eff} = \frac{(h-1)WT}{2W(h-2) + W} = \left(\frac{h-1}{2h-3}\right)T$$

•The forward and backward delays are the same as in ladder pattern

$$\mathbf{D}_{\triangleright}, \mathbf{D}_{\triangleleft} \sim \mathbf{U}\left[(h-1)\tau, \left(\frac{2h-3}{h-1}\right)T_{\text{eff}} + (h-1)\tau\right]$$
$$\mathbb{E}(\mathbf{D}_{\triangleright}) = \left(\frac{2h-3}{2h-2}\right)T_{\text{eff}} + (h-1)\tau.$$

(1)
$$\mathbf{D}_{\triangleright}, \mathbf{D}_{\triangleleft} \sim \mathbf{U}[0.15, 3.48]$$

 $\Rightarrow \max(\mathbf{D}_{\triangleright}, \mathbf{D}_{\triangleleft}) = 3.48s$

$$(2) T_{eff} = 510 ms$$

 $P_{wakeup} = 1.96E_0$ Lifetime = 47.2 months

Summary

	Max. Delay	T _{eff}	Lifetime
Synchronized	8s	250ms	23.1
Even-Odd Shifted	5s	400ms	37.0
Ladder Froward	5.95s	350ms	32.4
Two-Ladders	4.15s	425ms	39.3
Cross-Ladders	3.48s	510ms	47.2

Multi-Parent Method

Original tree topology □ Single parent □ Fixed path □ Same wakeup pattern Multi-parent tree topology □ Multiple parents □ Multiple paths Different wakeup patterns

Main Assumption

- "We can divide the nodes in the network into multiple disjoint groups such that at least one parent from each group can be assigned to any node in the network."
- Different groups have different wakeup patterns.
- g: the number of groups

Backward Delay

- The multi-parent idea can reduce the backward delay but the forward delay is not impacted by this idea.
- The distribution of *backward delay* is the same as in single parent case but the T_{eff} is scaled down by factor g.

$$T_{eff} \Longrightarrow (\frac{T_{eff}}{g})$$

Forward Delay

The delay in (1) is reduced by using different delivery paths

The multi-parent idea increases the delay in (2)

Combination

- We can combine multi-parent idea with wakeup patterns to provide the best performance.
- Best combination
 - + Forward ladder pattern

 $\left. \begin{array}{l} \mathbf{D}_{\triangleright} \sim \mathbf{U} \left[0.15, 2.15 \right] \\ \mathbf{D}_{\triangleleft} \sim \mathbf{U} \left[1.95, 2.95 \right] \end{array} \right\} \ \Rightarrow \ \max(\mathbf{D}_{\triangleright}, \mathbf{D}_{\triangleleft}) = 2.95s$

 $T_{eff} = 700ms$, $P_{wakeup} = 1.43E_0$, Lifetime = 64.8 months >47.2 in crossed-ladders pattern

Evaluation and Comparison

(a): wakeup rate ↑
 delay ↓, Power ↑

(b): lower curve, more efficient

(c): for energy-limited system, the selection of good pattern is important

Summary

■ g= 1

□ <u>Crossed-ladder</u> pattern is the best

- D=3.48s, T=510ms, lifetime=47.2 months
- g= 2

□ *Forward ladder* pattern is the best

- D=2.95s, T=700ms, lifetime=64.8 months
- If the system requires a good backward delay, backward ladder pattern is the best choice.
 - □ g = 1, D=2.15s
 - □ g = 2, D=1.15s

Effect of Number of Groups

- The delay is reduced significantly from g=1 to g=2.
- g=2 is the most practical value

Conclusions

- The authors analyze different wakeup schemes and delay distributions.
- A new wakeup pattern is proposed
 Crossed-ladders pattern
- A new cross layer idea is proposed
 Multi-parent method

Discussions

- Delay distribution is not always symmetric
 Backward delay >= Froward delay
- Application-based wakeup scheme
 Special purpose wakeup pattern
- Congestion control scheme