Funneling-MAC: A Localized, Sink-oriented MAC for Boosting Fidelity in Sensor Networks

The Fourth ACM Conference on Embedded Networked Sensor Systems (SenSys 2006)

Outline

- Introduction
- Funneling MAC
- Performance Evaluation
- Conclusions
- Discussions

Introduction

- Three categories
 - □ Synchronized approaches
 - Pre-scheduled wake-up pattern
 - Ex: S-MAC (2002), T-MAC (2003)
 - □ Asynchronous approaches
 - Independent wake-up pattern
 - Ex: B-MAC (2004), Wise-MAC (2005), X-MAC (2006)
 - □ Hybrid approach
 - CSMA + TDMA
 - Z-MAC (2005)

Asynchronous Protocol

- No idle listening
- Low power listening (LPL)
 - Preamble sampling
- A sender transmits a *preamble* before sending data.
- When the receiver will wake up and detect the preamble, it stays awake to receive this data.

Asynchronous Protocol

Advantages

- The duty cycles of sender and receiver are completely decoupled
- □ No synchronized overhead
- Low power listening saves energy
- Disadvantages
 - □ Long waiting time
 - □ Overhearing problem
 - □ Per-hop latency

Hybrid Protocol: Z-MAC

- Z-MAC uses CSMA as the baseline MAC scheme, and uses a TDMA schedule to enhance channel utilization under high contention
- Unlike TDMA, a node may transmit during any time slot in Z-MAC

Funneling Effect

Funneling Effect

The majority of packet loss in a sensor network within the first few or more hops from the sink, even under light traffic conditions.

Funneling-MAC

- A hybrid protocol
 CSMA/CA + localized TDMA
- Sink-oriented
 - The TDMA scheduling is managed by the sink
- Localized TDMA
 - TDMA only operates in the funneling region close to the sink, called intensity region.

Funneling-MAC

- On-demand beaconing
- Sink-oriented scheduling
- Timing and framing
- Dynamic depth-turning
- Meta-scheduling Advertisement

On-demand beaconing

Two operation modes

- □ CSMA: by default
- TDMA: the nodes that receive a beacon from a sink
- Intensity region
 - Covered by the beacon message
 - □ *f*-node
 - □ TDMA operation

On-demand beaconing

On-demand beaconing

- The sink node controls the transmission power of the beacon to regulate the boundary of the intensity region.
- Beacon packet
- The beacon is sent periodically every beacon interval

- The sink node manages the TDMA scheduling of sensor events in the intensity region.
- Path aggregation

- The sink needs to gather path information from incoming packets.
- Path information field (in packet header)
 ath head id, # of hops>
 EX: path A-F-E-D-sink
 - path information: <A, 4>

Slot allocation rule:

Example: traffic rate of a path = k packets/superframe number of hops = h

$$\lfloor k \rfloor \times h$$
 is allocated to the path

Schedule packet

- Ex: <A, 2> and <B, 2> in node E's table

Timing and Framing

- Super frame = CSMA + TDMA
- The schedule packet typically follows a beacon

Dynamic Depth Tuning

Parameters

- A: total # of slots scheduled
- A_{max}: Max. available slots in one superframe
- d: the depth of the intensity region
- d_{max}: the upper bound of the depth d
- The depth is controlled by the transmission power

Dynamic Depth Tuning

- Depth-tuning algorithm
 - □ Star up: common power
 - $\Box A < A_{max}$: increase the transmission power for the next beacon until A > A_{max} or d > d_{max}
 - $\Box A > A_{max}$: decrease the transmission power for the next beacon
 - $\Box A = A_{max}$: the depth is at the optimal point

Meta-Scheduling Advertisement

Interference issues

- 1. Hybrid MAC and broadcasting of sink signal
- 2. In the intensity region, some nodes do not receive beacons
- 3. Nodes outside the boundary of the intensity region do not know the TDMA schedule

Meta-Scheduling Advertisement

- All f-nodes that received beacon and schedule embed the meta-schedule in the first event data packet transmitted toward the sink every beacon interval.
- A meta-schedule contains:
 - □ Superframe duration
 - □ TDMA duration
 - □ Time left of the current TDMA frame
 - □ # of superframe repetitions

Performance Evaluation

- 45 mica2 motes
- Bit rate = 19.2 kbps
- Packet size = 36 bytes
- Transmission power = -10 ~ 5 dBm

□ Default transmission power = -10 dBm

- Beacon interval = 20 sec
- Super frame size = 1 sec
- Slot size = 30 msec

Testbed Environment

Comparison Protocols

- •Turn off low power listening
- •Use the same preamble size

Impact of Depth-Tuning

Impact of Boundary Node Interference

- Transmission power range: -6 ~ -8 dBm
- Fixed power level = -7 dBm

2007.03.29

Loss Rate Distribution

28

Multi-hop Throughput

Schedule drift will degrade the network throughput --especially for Z-MAC

Multi-hop Throughput

For light load, Z-MAC and B-MAC perform the same
For heavy load, Z-MAC outperforms B-MAC

Throughput

	0.2 pps	1 pps	2 pps
B-MAC	272	1099	1631
Baseline	645	1511	1583
(d = 1)	(124 %)	(37 %)	(0 %)
Funneling	1191	1925	1872
(d dynamic)	(338 %)	(75 %)	(15 %)

Conclusions

 This paper proposes a hybrid TDMA/CSMA MAC protocol
 Using TDMA in the intensity region
 The intensity region is controlled by the transmission power of the beacon

The funneling MAC outperforms B-MAC and Z-MAC under a wide variety of network and traffic conditions