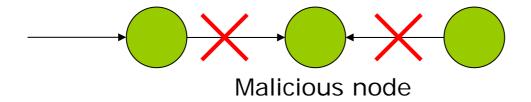
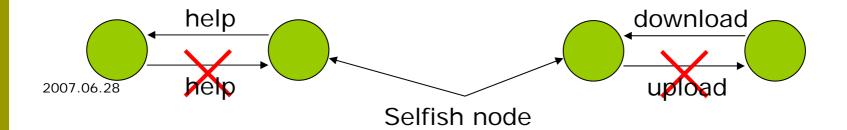
Survey on Reputation and Incentive Schemes in Wireless Ad-Hoc Networks

Po-Yu Chen

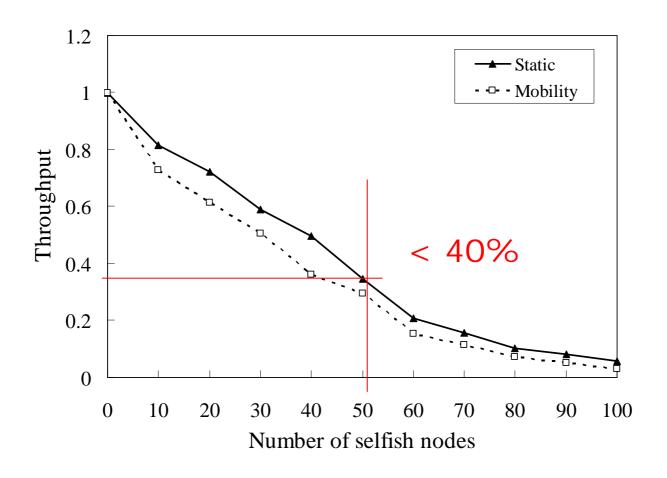
2007.06.28


Introduction

Mobile ad-hoc networks are formed by a set of mobile nodes in a self-organized way without relying on any infrastructure or centralized administration.


The nodes in the networks have to cooperate with each other to provide networking services.

Non-cooperative nodes


- Malicious nodes
 - To damage the network

- Selfish nodes
 - To maximize their benefits

The effect of selfish nodes on network throughput

Solutions

- Reputation scheme
 - Giving each node a reputation value
 - Punishing the nodes with bad reputation values
- Incentive scheme
 - In order to stimulate nodes to provide network services.
 - Nodes will be rewarded for providing services.

Reputation scheme

- Watchdog-like scheme [1][5]
 - A watchdog monitors all nodes' behaviors in the network.
- CONFIDNAT [2][3]
 - The trust relationships with others rely on passive observation of all packets within a one hop neighborhood.
- □ CORE (COllaborative REputation Mechanism) [4]
 - Each node keeps track of other nodes' reputation computed based on information monitored and provided by other nodes.

Drawbacks

- The watchdog-like scheme can not properly monitor the neighbor nodes.
- These approaches may incur traffic overhead and wrong accusation spreading
- They do not actively provide incentives for the selfish nodes to stimulate cooperation in the network.

Incentive Schemes

MarketNet [6], 1998

This economic model uses virtual currency to control access to system resources.

□ Sprite [7]

- It uses credit to provide incentive to mobile nodes for stimulating cooperation.
- It uses the Credit Clearance Service (CCS) to manage credits and accounts for each node as a bank.

Incentive Schemes

Nuglet [8][9][10]

It uses virtual currency as payment for packet forwarding services.

Packet Purse Model

- The currency is loaded in the packet by source node.
- And the currency will be taken out by intermediate nodes during forwarding packet.

Packet Trade Model

The intermediate node buys the packet from the previous node and sell it to the next hop node.

Drawbacks

- These incentive mechanisms have not considered the issue of cooperating probability of each node in the network.
- They do not mention the mechanisms for preventing the malicious behaviors of nodes in the network.
- Some schemes need a central server to manage the network, which is not applicable in wireless ad-hoc networks.

Summary

- The centralized management is not suitable for wireless ad hoc networks.
- Second-hand information may cause wrong decision.
- Cooperating probability should be considered.
- The reputation scheme is passive.
- The incentive scheme can not resist malicious nodes.

References

- 1. S. Marti, T. Giuli, K. Lai, and M. Baker, "Mitigating Routing Misbehavior in Mobile Ad Hoc Networks," in *Proceedings of The Sixth International Conference on Mobile Computing and Networking 2000*, Boston, MA, Aug. 2000.
- S. Buchegger and J.-Y Le Boudec, "Performance Analysis of the CONFIDANT Protocol: Cooperation of Nodes Fairness in Dynamic Ad-Hoc Networks," in *Proceedings of IEEE/ACM Workshop on Mobile Ad Hoc Networking and Computing (MobiHOC)*. IEEE, June 2002.
- 3. S. Buchegger and J.-Y Le Boudec. "The Effect of Rumor Spreading in Reputation Systems in Mobile Ad-hoc Networks," in *Proceedings of Modeling and Optimization in Mobile, Ad Hoc and Wireless networks (WiOpt'03)*, INRAI Sofia-Antipolis, France, Mar. 2003.
- P. Michiardi and R. Molva, "CORE: A Cooperative Reputation Mechanism to enforce node cooperation in Mobile Ad hoc Network," in *Communications and Multimedia Security Conference (CMS) 2002.*
- 5. A. Spyropoulos and C. Raghavendra, "Energy Efficient Communications in Ad Hoc Networks Using Directional Antennas," in *Proceedings of IEEE INFOCOM '02*, New York, NY, June 2002.
- 6. Y. Yemini, A. Dailianas, D. Florissi, and G. Huberman, "MarketNet: Marketbased protection of information systems," In *Proceedings of the First International Conference on Information and Computation Economies*, pages 181-190, Charleston, SC, Oct. 1998.
- 5. Zhong, J. Chen and Y.R. Yang, "Sprite: A Simple, Cheat-Proof, Credit-based System for Mobile Ad-Hoc Networks," in *Proceedings of IEEE INFOCOM '03*, San Francisco, CA, Apr. 2003.
- 8. L. Buttyan and J. P. Hubaux, "Nuglets: A Virtual Currency to Stimulate Cooperation in Self-Organized Mobile Ad-Hoc Networks". *Technical Report DSC/2001/001, Swiss Federal Institute of Technology*, Lausanne, Switzerland, Jan. 2001.
- 9. L. Buttyan and J. P. Hubaux, "Enforcing Service Availability in Mobile Ad-Hoc WANs," in *IEEE/ACM Workshop on Mobile Ad Hoc Networking and Computing (MobiHOC)*, Boston, MA, Aug. 2000.
- 10. L. Buttyan and J. P. Hubaux, "Stimulating Cooperation in Self-Organizing Mobile Ad Hoc Networks," *ACM Journal for Mobile Networks (MONET), special issue on Mobile Ad Hoc Networks*, Oct. 2003.