IBUBBLE: MULTI-KEYWORD ROUTING PROTOCOL FOR HETEROGENEOUS WIRELESS SENSOR NETWORKS

INFOCOM 2008
Po-Yu Chen
2008.03.13

Outline

- Introduction
- iBubble
 - Multi-keyword Routing Protocol for Heterogeneous Wireless Sensor Networks
- Evaluation
- Conclusion

- Wireless sensor networks (WSNs) can be separated into two kinds
 - Homogeneous WSN
 - Multi-purpose
 - Multi-function
 - Node-centric
 - Heterogeneous WSN (HWSN)
 - Different functionality
 - Limited mission
 - Data-centric

- Data aggregation (DA)
 - Before sending data, a node will collect and compress data receiving from its neighbors.
 - DA can reduce message overhead
 - iBubble uses DA to decrease the cost of propagating messages.

- Diffusion.
- Directed diffusion is firstly used for datacentric routing protocols. [1] [2]
- Directed diffusion
 - 2-phase-pull diffusion
 - o sink->source; source -> sink
 - 1-phase-pull diffusion
 - sink->source; reverse link
 - 1-phase-push diffusion
 - Source->sink; reverse link

iBubble

- iBubble is a multi-keyword routing protocol and designed for HWSN.
 - iBubble is also a data-centric protocol
- iBubble provides a mechanism for communication between the BS and its nodes.
 - Node-to-node communication is not addressed
- iBubble aggregates keywords to minimize the cost of bubbling keywords up to the BS.

Design object

- Provide efficient data-centric routing.
- Provide aggregation mechanism to minimize bubbling cost.
- Support both static and mobile HWSN.
- Provide simple fault diagnosis and self maintenance.
- Remove reliance on global identifiers.

Protocol details

- Initialization phase
 - Setup the attributes and propagate keywords
- Bubbling phase
 - Keywords aggregation
- Querying phase
 - Let BS to find data

Initialization phase

- Nodes have to determine a vector (hopcount) to the BS.
- BS broadcasts a hop-count beacon (hc=1)
- Shortest path first.
- Before bubbling keywords, nodes will wait for a period of time, which depends on their hop-counts.

Bubbling phase

- Bubbling establishes the keyword set (KL) for every node.
- Whenever the KL for a node is changed it must bubble the new KL to the BS.
 - Update KL
 - Aggregate KL
- Hop-count can prevent loops and restricts the keyword bubbling towards the sink.

Keyword set

- Personal (KLp)
 - The KL describes the node
- All intermediate neighbors (KLN)
 - Neighbor's KL
- Published (KLP)
 - KLP = KLp U KLN

Keywords

- Keyword can be seen as the ability of a sensor node.
- For example
 - Temperature: temp.; <49; 50-99; >100

Keyword aggregation

Example

Querying phase

- Queries are always initialed by BS and propagated throughout the network utilizing the published KLs.
- Query message=<Query, AppTest, UID>
 - Query specifies high level query types
 - AppTest is used to refine the query
 - UID is the unique id of the query

Example

Query=<temp, <100, ID1> Response:

<N8, N5, N1>

<N9, N6, N2>

Query=<temp, >100, ID2> Response:

<N10, N6, N1>

Fault tolerance & Mobility

- Redundant paths
 - KL are propagates along all neighbors with lower hops
- ✓ Re-routing
- Keyword set updating
- When a node detects a fault or move, it will
 - □ Determine its new hop-count
 - Determine its KLN and KLP
 - ■Broadcast its new KLP

Example

Evaluation

- Comparison with 1-phase pull diffusion
- 1000m*1000m area with one BS
- Communication range is 240m
- Three key distribution schemes

Message comparision

 $\mathbf{type} = temperature$

low = 100

high = 150

region = 1

Query: 100 - 150

AppTest: region = 1

Directed diffusion

iBubble

Query saving without bubbling

No mobility

Query saving with bubbling

No mobility

Movement vs. Saving

M random nodes move and between each move there are q queries

Overall cost

Aggregation savings

Random key distribution

Aggregation savings

Conclusion

- iBubble is a data-centric routing that allows queries based on a set of keywords.
- iBubble provides source mobility, faulttolerance and self-healing support.
- The aggregation scheme can minimize the cost of message propagation.
- iBubble provides a simple and uniform solution in HWSN.

References

- 1. C. Intanagonwiwat, R. Govindan, and D. Estrin, "Directed diffusion: ascalable and robust communication paradigm for sensor networks," in Mobile Computing and Networking, 2000, pp. 56–67.
- 2. J. Heidemann, F. Silva, and D. Estrin, "Matching data dissemination algorithms to application requirements," USC/Information Sciences Institute, Tech. Rep. ISI-TR-571, April 2003.
- 3. L. Banks, S. Ye, Y. Huang, and S. F. Wu, "Davis social links: Integrating social networks with internet routing," To appear in ACM SIGCOMM 2007 Workshop on Large-Scale Attack Defense (LSAD), August 27, 2007, Kyoto, Japan.