RID:

Radio Interference Detection in Wireless Sensor Networks

INFOCOM 2005

Outline

Introduction

– Connectivity-Interference/ Interference-Connectivity

- Two Interference Detection Protocols
 - RID
 - RID-B
- Performance evaluation
- Conclusions and Discussions

Connectivity-Interference / Interference-Connectivity assumption

If node A can interference with node B's reception, then node B is within in the node A's communication range.

If node B is within in the node A's communication range, then node A can interference with node B's reception.

[Connectivity, Interference]

- Connectivity-Interference

 Connectivity leads to interference
- Interference-Connectivity
 - Interference comes from connectivity

Are these assumptions always valid?

Answer: NO

- These assumptions depend on the link quality.
 - Strong or Weak

Po-Yu Chen, MNet. Lab.

Experiment on Radio Interference

- MICA2 platform
- Disable carrier sensing and backoff operations in MAC layer
 - To ensure that all nodes can transmit simultaneously
- With no interference (only transmitter and receiver)
 - Strong link
 - ~ 8.5 ft.
 - Packet delivery ratio = 100%
 - Weak link
 - ~ 16.2 ft.
 - Packet delivery ratio = 80%

Summary

- In weak link case:
 - Interference does not necessarily imply connectivity
 - Distant nodes still interfere with transmissions
- In strong case:
 - A connectivity does not necessarily result in interference
 - Transmitter's strong signal dominates the interference signal
- Communication range \neq Interference range
 - It depends on how strong the link is

Goal:

To design collision-free MAC protocol, without knowing the interference relations among nodes.

Two Interference Detection Protocols

- RID: Radio Interference Detection Protocol
- RID-B: RID lightweight version

RID Protocol

Three steps

- 1. HD-ND detection
- 2. Information sharing
- 3. Interference calculation

1. HD-ND Detection (1/7)

- Transmitter broadcasts a HD packet and immediately follows it with a ND packet.
- HD packet: High Power packet
 - Node ID (2 bytes)
 - Packet type (1 byte)
- ND packet: Normal Power packet
 - A fixed size training packet
 - It is used to estimate the interference strength

1. HD-ND Detection (2/7)

• Detection estimation rule:

(threshold = background noise)

- If < threshold: the transmitter's interference is extremely weak, does not record any information
- If > threshold: records the (transmitter's ID, power level)

1. HD-ND Detection (3/7)

- The add-on rule
 - In order to solve that multiple HD-ND detection sequences from different transmitters may overlap.
 - 1. The power level sensed during time period *T*1, which is determined by the fixed length of ND packets, is stable.
 - 2. The power level sensed during time period *T*2, which is determined by the fixed size of both ND and HD packets, is always as low as that of the background noise.

1. HD-ND Detection (4/7)

1. HD-ND Detection (5/7)

1. HD-ND Detection (6/7)

The probability such a case happen is low

1. HD-ND Detection (7/7)

- If the detection result violates the add-on rules, the result is not useful and marked invalid.
- All these (transmitter's ID, power level) pairs are put in a local table of the receiver, called *Interference_In* table

2. Information sharing

- The <u>high power broadcast</u> packet is used for each node to broadcast the interference information in its own *Interference_In* Table
- Interference_Out Table
 - This table contains information of nodes on which node R has potential interference
- Interference_HTP Table
 - This table contains information of nodes that are hidden from node R, when one of R's neighbor is the receiver

3. Interference calculation

Simple case: K=2

$$\begin{aligned} \mathsf{N}_{2}(D) &= \{(i_{1}, i_{2}) \mid \\ & (P_{i_{1}D} < (P_{i_{2}D} + P_{idle}) * SNR_{T} \\ & \land (P_{i_{1}D} > receiver_sensivity) \} \end{aligned}$$

- Two results:
 - No interference, i₁'s signal can be received by node D
 - Node $i_1{}^{\prime}{}^{\prime}{}^{\rm s}$ signal can be disturbed by node $i_2{}^{\prime}{}^{\rm s}{}^{\rm s}$ signal

RID-Basic (RID-B) Protocol --lightweight RID (1/4)

- Motivations:
 - RID needs many information about the overall networks.
 - RID-B is designed for sensor networks
 - It is difficult to get overall information about the networks
 - Most applications are event-based applications
 - Limited power supply
 - Limited communication bandwidth

RID-B Protocol (2/4)

Two steps:

- 1. HD-ND detection
 - Detection rule and add-on rule for receiver are the same with RID.
 - Nodes are still running HD-ND detection estimation operations.
 - Build Interference_In Table
- 2. Information sharing
 - The Interference_Out and Interference_HTP tables are also build in the same way.

RID-B Protocol (3/4)

Three differences:

Original: (ID, power level)

1. The *Interference_In* table gets reorganized again, according the following condition:

$$P_{\min R} < (P_{JR} + P_{idle}) * SNR_T$$

where $P_{\min R} = \min\{P_{iR} \mid i \neq J\}$

Then, remove powerlevel

The most distant neighbor node R can hear packet from

 $\land P_{iR} > receiver_sensitivity\}$

After reorganizing, the table only consists of rows of transmitter's IDs.

RID-B Protocol (4/4)

- 2. Multiple transmitters are not been taken into consideration
 - Because of the probability that these packets overlap is very low.
 - The payload of MAC layer is short, usually 32 bytes
- 3. There is no interference calculation phase in RID-B
- Compare with RID, RID-B is simple and lightweight

Performance evaluation

- Compare with a distributed TDMA protocol, NAMA (Node Activation Multiple Access)
 [2].
 - In NAMA, modes within two comm. hops are scheduled to avoid transmitting at the same time, to avoid collision.
 - NAMA protocol only uses the knowledge of comm. range. (no interference range)

Performance evaluation

- Three experiment groups
 - Different system load
 - The sensitivity to different ICR ratio
 - The sensitivity to different SNR threshold
- In each group, the performance is evaluated with 5 metrics:
 - Average single hop loss ratio
 - Average single hop transmission time
 - #retransmission
 - #control packet
 - Energy consumption

Performance evaluation

Simulation parameters

- Area: 144m * 144m
- #node:144 (uniform placement)
- Application: Many-to-one CBR streams
- Payload size: 32 bytes
- BW: 250kb/sec
- Radio range: 25m

Conclusions

- First time to detect radio interference among nodes in run-time system
- The authors show that
- Communication range \neq Interference range
- The connectivity/interference assumptions are not always valid.

References

- [1] G. Zhou, T. He, J. A. Stankovic and T. Abdelzaher, "RID: Radio Interference Detection in Wireless Sensor Networks," in IEEE INFOCOM 2005.
- [2] V. Rajendran, K. Obraczka, and J.J. Garcia-Luna-Aceves, "Energyefficient, collision-free medium access control for wireless sensor networks," in ACM SenSys 2003, November 2003.
- [3] L. Bao and J. J. Garcia-Luna-aceves, "A new approach to channel access scheduling for ad hoc networks," in *ACM MobiCom 2001*, July 2001, pp. 210–221.