Z-MAC: a Hybrid MAC for Wireless Sensor Networks

SenSys 2005, November 2-4

2005.10.14

Outline

- Introduction
- Design of Z-MAC
- Performance Evaluation
- Conclusions and Discussions
- References

2005.10.14

Introduction

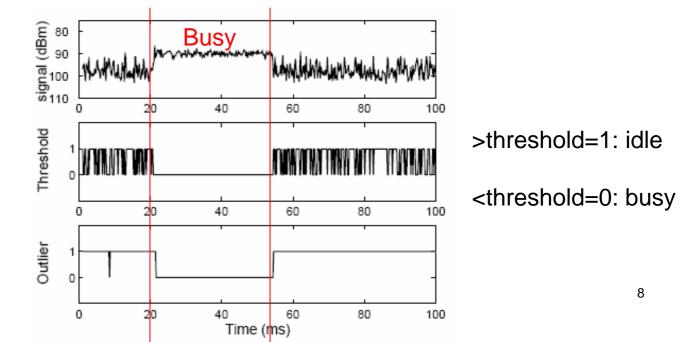
- Comparison
- Goal
- Related Works

Comparison

- Adv.
 - Simplicity, flexibility, and robustness
 - No clock synchronization and global topology
 - Adaptive to dynamic network topology
- Dis.
 - Collision: hidden-terminal problems
 - RTS/CTS incurs high overhead of the channel capacity in sensor networks
- TDMA
 - Adv.
 - No extra overhead to solve the hidden terminal problem
 - Dis.
 - Needs a centralized node to find an efficient time schedule
 - Needs clock synchronization \rightarrow high overhead
 - Handling dynamic topology change is expensive \rightarrow high overhead
 - Interface irregularity

Goal

- Z-MAC is a hybrid MAC protocol
 - CSMA+TDMA
 - Zebra MAC
- To achieve
 - High channel utilization and low latency under <u>low</u> contention (like CSMA)
 - High channel utilization under <u>high</u> contention (like TDMA)
 - Low power operation
 - Simple implementation


- S-MAC (Schedule MAC) [1]
 - Periodically sleeps, wakes up, listens to the channel, and then returns to sleep
- D-MAC (Duty cycle adaptation MAC) [2]
 - Improve the S-MAC uploading latency
- T-MAC (Time-out MAC) [3]
 - Dynamic active time to reduce the idle listening time

- B-MAC (Berkeley MAC) [4]
 - B-MAC is only a link-layer protocol
 - No organization
 - No synchronization
 - B-MAC can be reconfigurable by network protocol
 - The main function of B-MAC
 - CCA: Clear Channel Assignment
 - LPL: Low Power Listening
 - The main technique
 - To estimate the channel signal strength and compare it with the noise signal strength

- CCA: Clear Channel Assignment
 - Measure the channel signal strength and compare it with the noise floor
 - CC1000 low power FSK transceiver (chipcon.com)

- LPL: Low Power Listening
 - Each time the node wakes up, it turns on the radio and checks for activity
 - Activity is detected (detect the preamble)
 - Node powers up and stays awake for receiving data
 - After reception, the node returns to sleep
 - If no data is received, a timeout forces the node back to sleep

Design of Z-MAC

- Neighbor Discovery and Slot Assignment
- Local Framing and Synchronization
- Transmission Control

Run only once during the setup phase

Overview of Z-MAC

- Z-MAC uses CSMA as the baseline MAC scheme, and uses a TDMA schedule to enhance channel utilization under high contention
- Unlike TDMA, a node may transmit during any time slot in Z-MAC

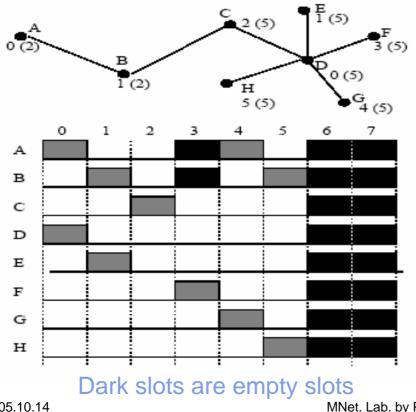
Neighbor Discovery and Slot Assignment

- Neighbor discovery
 - Periodically broadcasts a <u>ping</u> to its one-hop neighbors to gather one-hop neighbor list
- Slot assignment
 - DRAND [6]
 - is a distributed channel reuse scheduling algorithm
 - ensures a broadcast schedule where no two nodes within a two-hop communication neighborhood are assigned to the same slot

Local Framing and Synchronization

Local Framing

 Each node maintains its own <u>local time frame</u> that fits its local neighborhood size, but avoids any conflict with its contending neighbors.


Time frame rule (TF rule). Let a node *i* be assigned to a slot s_i according to DRAND and the MSN within its two-hop neighborhood be F_i . We set *i*'s time frame to be 2^a where a positive integer *a* is chosen to satisfy condition $2^{a-1} \leq F_i < 2^a - 1$. That is, *i* uses the s_i -th slot in every 2^a time frame (*is* slots are $l \cdot 2^a + s_i$, for all l = 1, 2, 3, ...).

THEOREM 3.1. If every node *i* uses only slots $l \cdot 2^a + s_i$, for all l = 1, 2, 3, ..., then no node *j* in the two-hop neighborhood of *i* uses any slot that *i* uses.

Local Framing and **Synchronization**

MSN: maximal slot

Global time frame = 6 (MSN) When the TF rule is used, the frame size is changing to 8

$$2^{3-1} \le 6 < 2^3 - 1$$

So, the frame size is $2^3 = 8$

Local Framing and Synchronization

- In order to use TF rule, the global clock synchronization is needed
- Synchronizing on slot **0**
- Z-MAC performs global clock synchronization such as TPSN [7], only once at the beginning
 - Please refers to the lab meeting report in 2004/02/13

Transmission Control

- A node can be in one of two nodes
 - LCL: Low Contention Level
 - Any node can compete to transmit in any slot
 - HCL: High Contention Level
 - Receives an explicit contention notification (ECN) message from two-hop neighbor within the last t_{ECN} period
 - Only the owners of the current slot and their one-hop neighbors are allowed to compete for the channel access

Transmission Control

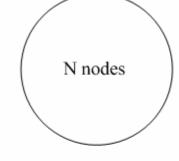
- Transmission rule
 - If node i is the owner of the current slot
 - Takes a random backoff within a fixed time period T_0
 - Run CCA
 - If the channel is clear, it transmit the data
 - If the channel is not clear, wait and repeat the process

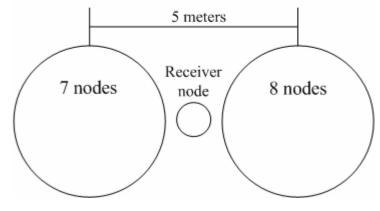
Transmission Control

- If node i is a non-owner of the current slot
 - In LCL and the slot is not owned by two-hop neighbors
 - Wait for T₀ and takes a random backoff within [T₀, T_{no}]
 - Run CCA
 - If the channel is clear, it transmit the data
 - If the channel is not clear, wait and repeat the process
 - In HCL
 - Postpones its transmission until it finds a time slot either that
 - is not owned by a two-hop neighbor
 - is its owner

Explicit contention notification (ECN)

- ECN message notify two-hop neighbors not to act as hidden terminals to the owner of each slot when contention is high
- Two way to estimate two-hop contention
 - To receive ACK form the one-hop receiver and measure the packet loss rate
 - Sending feedback incurs extra overhead
 - To measure the noise level of the channel
 - Use CCA to measure

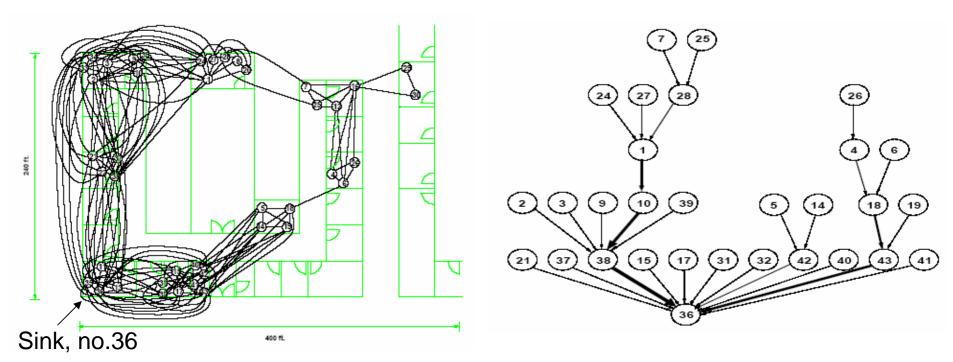


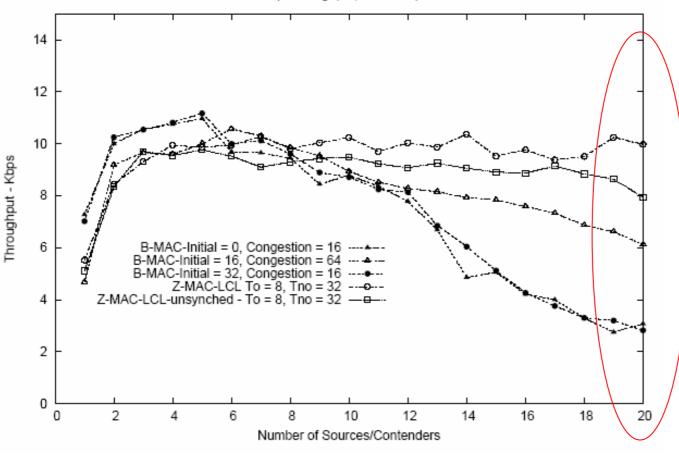

Performance Evaluation

- Experimental Method
- Throughput
- Energy Efficiency

Experimental Method

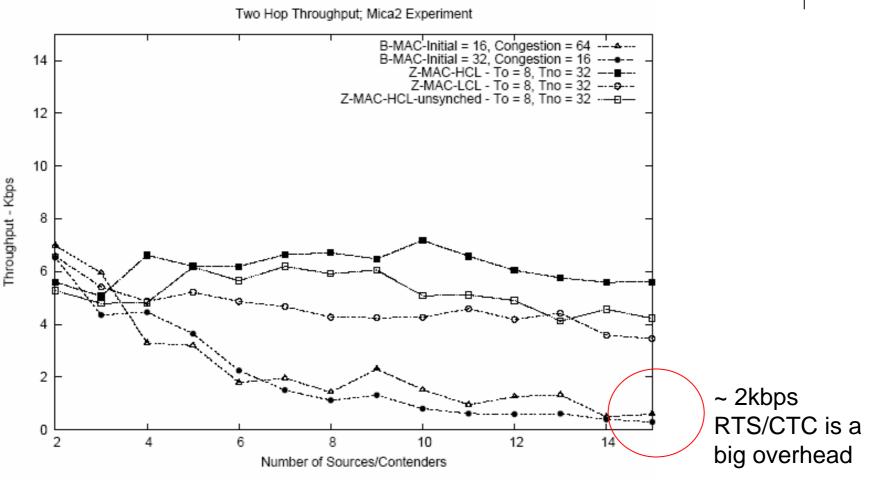
- Implementation in NS-2 and Mica2/TinyOS
- One-hop benchmark
 - N nodes are placed in a circle
 - No hidden terminals
- Two-hop benchmark
 - 2 clusters
 - Hidden terminals are present



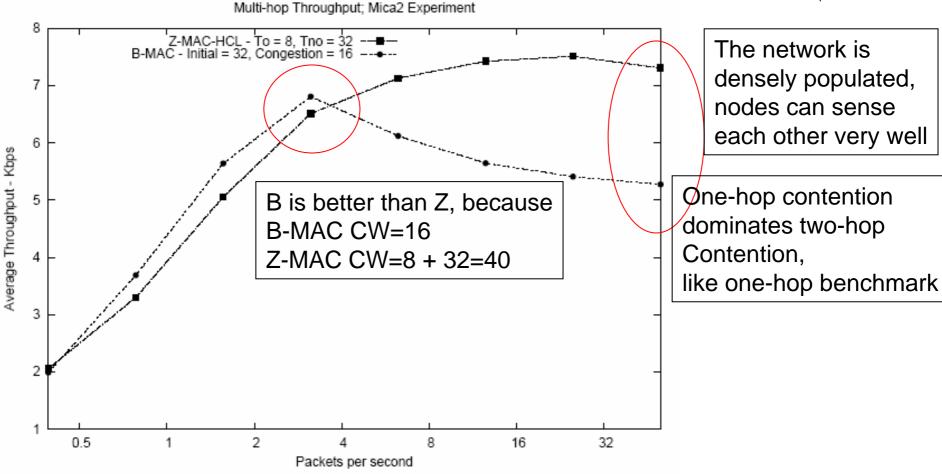

Experimental Method

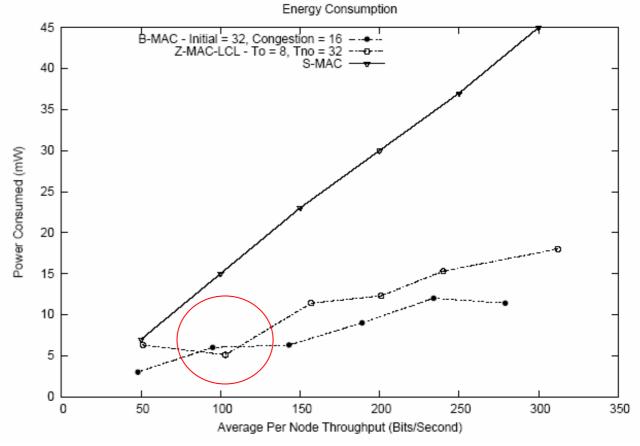
- Multi-hop benchmark
 - 42 nodes

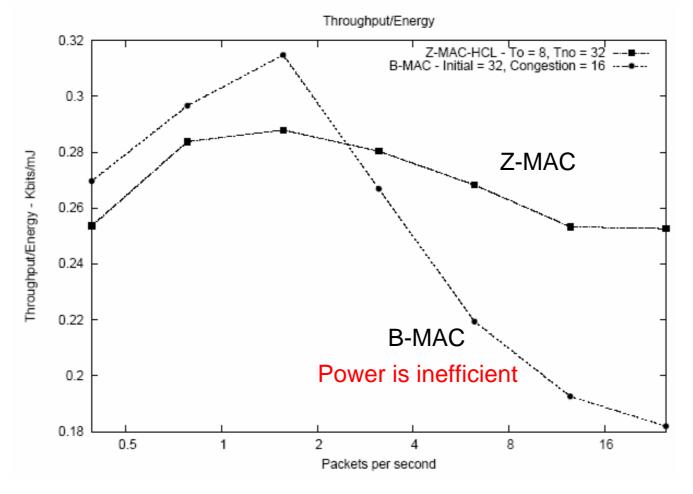
Throughput One-hop benchmark


One Hop Throughput; Mica2 Experiment

Larger CW size reduce the contention among senders

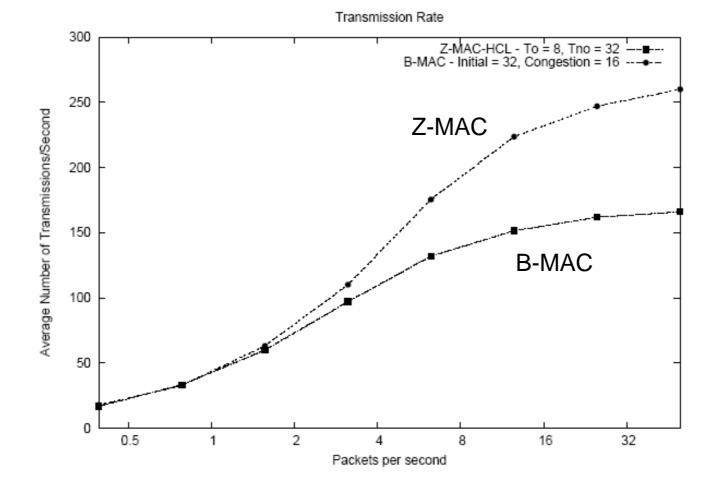

Throughput Two-hop benchmark


Throughput Multi-hop benchmark



Energy Efficiency low-data rate with low duty cycle

- Backoff window sizes are larger
- Clock synchronization message are periodically sent


Energy Efficiency Multi-hop benchmark

Energy Efficiency Multi-hop benchmark

Conclusions

- Z-MAC uses CSMA as the baseline MAC scheme, and uses a TDMA schedule to enhance channel utilization under high contention
 - Under light load, it acts as CSMA protocol
 - Under heavy load, it acts as TDMA protocol
- Z-MAC acts as an upper layer over B-MAC
- Z-MAC is implemented in Mica2/TinyOS
 - http://www.csc.ncsu.edu/faculty/rhee/export/zmac