XVR: X Visiting-pattern Routing for Sensor Networks

INFOCOM 2005 2005.12.23

Outline

- Introduction
- X Visiting-pattern Routing
- Performance Evaluation
- Conclusions and Discussions

Yu He and Cauligi S. Raghavendra, "XVR : X Visiting-pattern Routing for Sensor Networks," INFOCOM 2005. vol. 3, pp. 1758-1769, Mar. 2005.

Introduction

- Sensor Networks
 - Small, low-cost, and low-power devices
- Routing protocols in sensor networks need to be changed to accommodate application and network dynamics
 - Application: resource discovery, monitoring application
 - Heterogeneous network : different subnets with different routing services

Motivation

- Existing routing services have limited changeability
 - Require re-programming routing function
 - Deployment cost is high
- Many routing services share essential properties but with different visitingpatterns of packets
 - Visiting-pattern: where to forward packets as next hops in a network

Goal

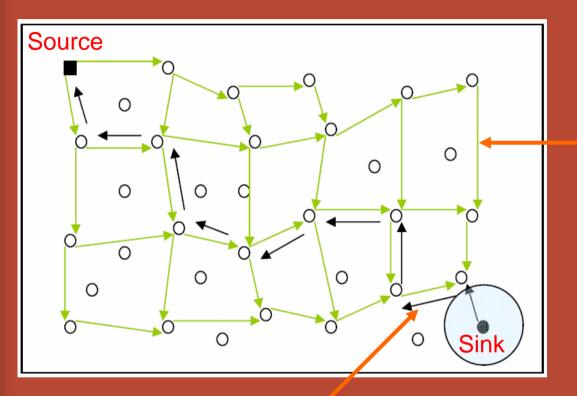
This paper proposes a general routing service for sensor networks "X Visiting-pattern Routing"

Facilitates routing changes

Key idea:

To decouple visiting-patterns of packets from the routing core

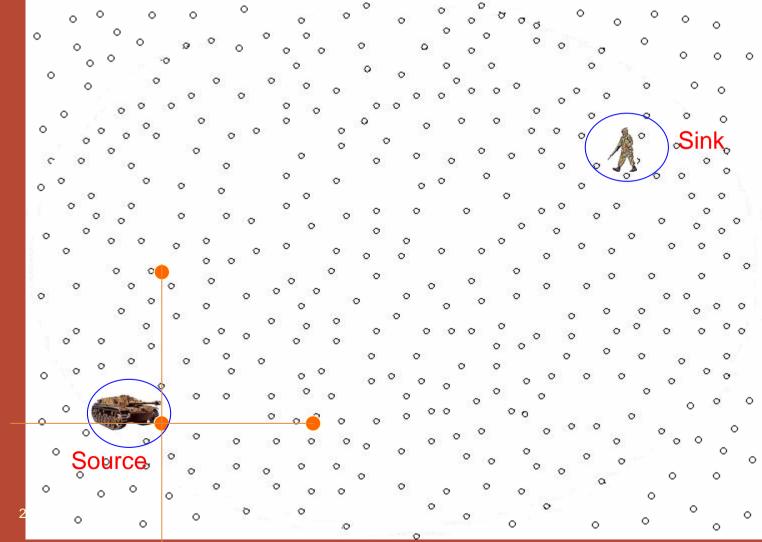
Packet types of a routing service

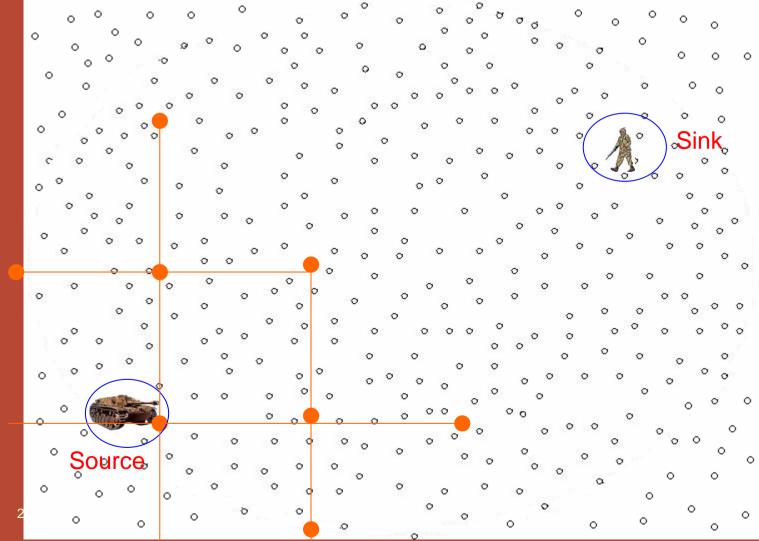

- Routing Control Packet

 To help building routes between sources and destinations
 - Its visiting-pattern is associated with routing overhead
- Data Packet
 - Includes data and follows built routes
 - Its visiting-pattern is associated with routing efficiency

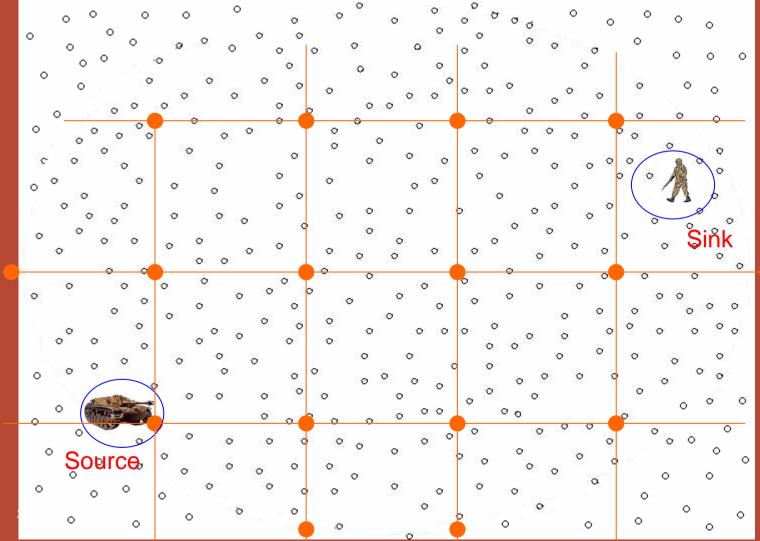
Two categories of routing services

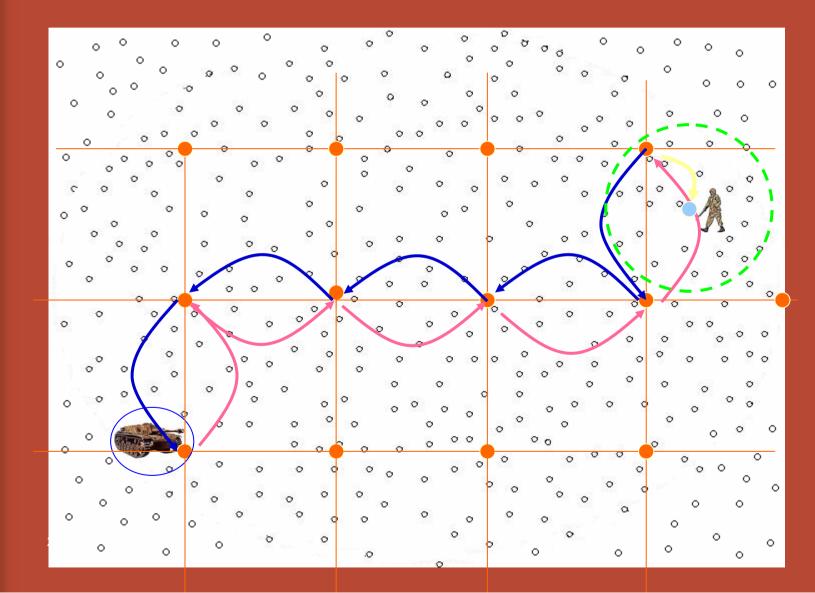
 Publication/Subscription-based - Sources act as publishing nodes Publishing control packets Sinks act as subscripting nodes Subscripting control packets Forwarding-based Packets are directly forwarded based on state information


Example -- TTDD


Visiting-pattern of control packets -- To build path

Visiting-pattern of data packets -- Next hop selection function


TTDD - Grid construction --building path

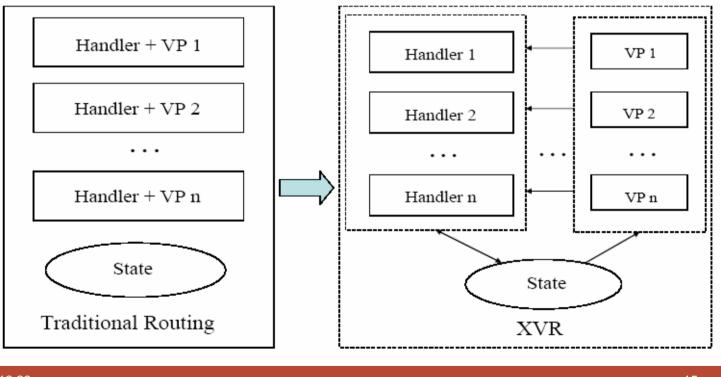

TTDD - Grid construction --building path

TTDD - Grid construction --building path

TTDD - data forwarding

Previous Works

- The existing routing protocols
 - GPSR (Greedy Perimeter Stateless Routing)
 - GEAR (Geographical and Energy Aware Routing)
 - TBF (Trajectory Based Forwarding)
 - Directed diffusion
 - TTDD (Two Tier Data Dissemination)
 - Rumor routing


		Next-hop Selection Function		
Forwarding- based	GPSR	Closest or perimeter neighbor to destination		
	GEAR (GPSR-extension)	Closest to destination areas or multiple neighbors		
	TBF	Neighbor along trajectory		
Publication/ subscription Based 2005.12.23	Directed-diffusion	Interested neighbor		
	TTDD	Interested grid cross-point neighbor		
	Rumor routing	Next hop in routing state 13		

XVR: X Visiting-pattern Routing

- Visiting-patterns are a key difference among routing services
- XVR
 - Decouple and parameterize visiting-patterns of packets
- Implementation of XVR
 - The associated packet types
 - Visiting-pattern specifications
 - A collection of state information
 - Visiting-pattern modules

Architecture

 XVR loads the corresponding packet handlers that issue or forward packets according to their visitingpattern.

2005.12.23

Routing Architecture Change with XVR

Advantages

- 1. The routing behaviors can be changed without modifying the routing core.
- 2. Different routing services can be compared in a unified environment.

3. Different visiting-patterns are adaptive to application and network dynamics.

Packet types in the XVR

- Packet types
 - Subscription : issued by sink to express its interest data
 - Publication : issued by <u>source</u> to announce data availability
 - Enforcement : issued from source or sink to build paths
 - Hello : issued by each node to collect neighbor information
 - Data : issued by <u>source</u> that includes the actual sensed data

Visiting-pattern in the XVR

• Visiting-patterns (six categories)

- Local : A packet is sent but not out of originator. (static)
- Flooding : From originator to all nodes in a network. (static)
- Restricted-flooding : is the flooding with TTL value. (static)
- Probable-forwarding : To decide if one neighbor will become a next hop with certain probability value. (static)
- Geographic-forwarding : chooses next hop(s) along predefined geographic curves. (static)
- Programmable-forwarding : by consulting state information and packets at service runtime. (dynamic)

Supported visiting-patterns for each packet type in the XVR

	Subscription	Publication	
Local	X	X	
Flooding	X	X	
Restricted-flooding	X	X	
Probable-forwarding	X	X	
Geographic-	X	X	
forwarding			
Programmable-	In-code	In-code	
forwarding			
Enforcement	Hello	Data	
Enforcement	Hello	Data	
Enforcement	Hello	Data	
Enforcement	Hello X	Data	
Enforcement		Data Data	

State maintained by the XVR

- Three packet types generate states
- Hello
 - Neighbor information state
 - neighbor id, the latest timestamp...etc.
 - XVR dynamically decides what information to be collected from neighbors by checking visiting-pattern parameters.

State maintained by the XVR

- Subscription
 - Interest state
 - Indexed by subscribed attributes and express interest from neighbors about this specified data.
 - Interest state : interested neighbor, latest timestamp, enforced flag
- Publication
 - Available state
 - Indexed by published attributes and express availability from neighbors about the published data.
 - Available state : available neighbor, latest timestamp, enforced flag

Algorithm

- For Publication/subscription-based routing
 - Three algorithm
 - Before-meeting algorithm
 - Meeting algorithm
 - After-meeting algorithm

Before-meeting algorithm

- Before a publication (subscription) packet reaches a node with matched interest (available) state, it is forwarded according to its visiting-pattern parameter.
- Passed nodes build or update available (interest) state that constitutes paths from sources (sinks) to nodes.

Publication packet \rightarrow interest state Subscription packet \rightarrow available state

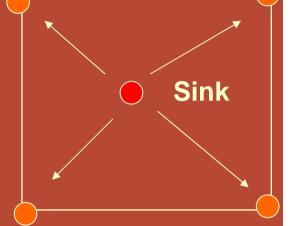
Algorithm

- Meeting algorithm
 - When a publication (subscription) packet passes a node with matched interest (available) state, one copy of the matched publication packet is made and marked as an *after-meeting packet*.
 - The original publication packet is continuously processed as a *before-meeting packet*.

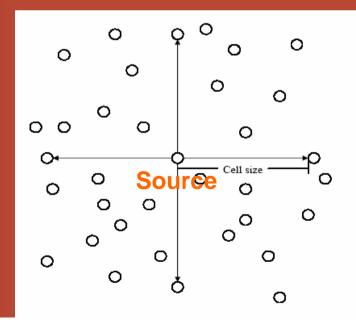
Algorithm

- After-meeting algorithm
 - After-meeting packet don't follow the specified visitingpattern parameter.
 - The marked publication (subscription) packets follow paths in interest state to reach sinks (sources)
 - When the publication packets arrive at sinks, enforcement packets are issued from sinks.
 - When the enforcement packets reach sources, route from sources to sink is built.

Using XVR


• To emulate existing routing services

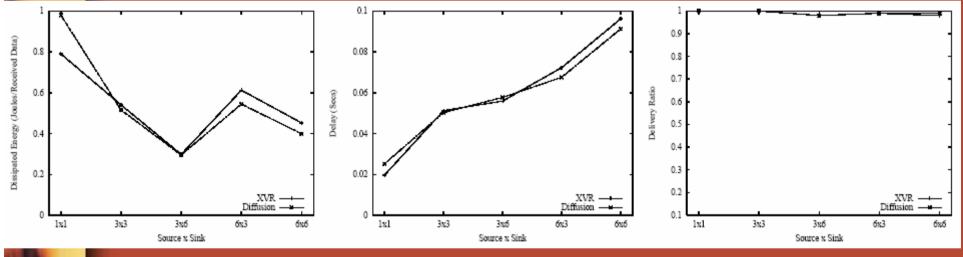
	Subscription	Publication	Hello	Data
GPSR			Restricted-fboding	Programmable-
				forwarding
GEAR			Restricted-fboding	Programmable-
				forwarding
TBF			Restricted-fboding	Programmable-
				forwarding
2pp-Diffusion	Flooding	Local		
Push-Diffusion	Local	Flooding		
1pp-Diffusion	Flooding	Local		
TTDD	Restricted-fboding	Geographic-	Restricted-fboding	
		forwarding		
Rumor-routing	Probable-forwarding	Probable-forwarding	Restricted-fboding	


Using XVR--Example

For TTDD

- Subscription visiting-pattern
 - Restricted-flooding
- Publication visiting-pattern
 - Geographical-forwarding

Starting-angle = 0 Step-angle = 90 Number = 4 Distance = cell size

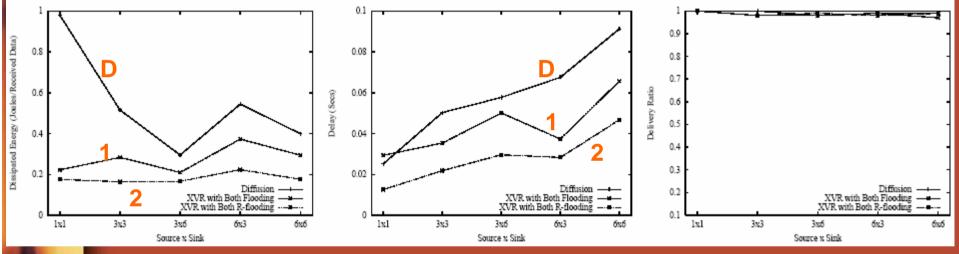

Performance Evaluation

- XVR is implemented in ns-2
- 100 nodes in 1500m * 1500m
- # of sinks and sources = 1, 3, 6
- Sending rate = 2 secs/packet
- Publication/Subscription packet size = 88 bytes
- Enforcement packet size = 104 bytes
- Data packet sizes = 106 bytes
- Hello packet sizes = variable lengths (depend on VP)
- Simulation time = 200 secs

Simulation Metric

- Dissipated Energy ratio
- Delay
- Delivery ratio

• XVR vs. Directed Diffusion

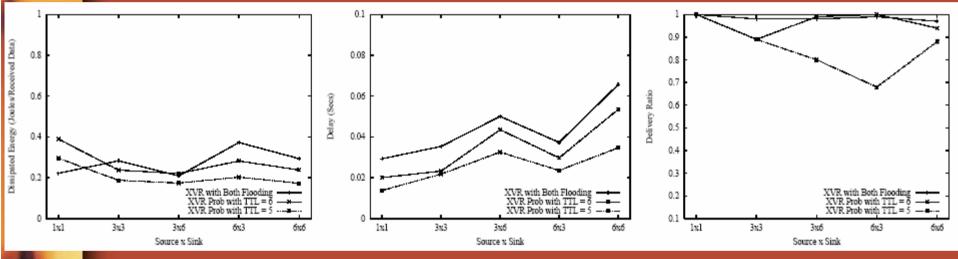

Dissipated Energy ratio

Delivery ratio

Visiting-pattern Subscription (sink): Flooding Publication (source): Local

• New Routing services vs. Directed Diffusion

Dissipated Energy ratio

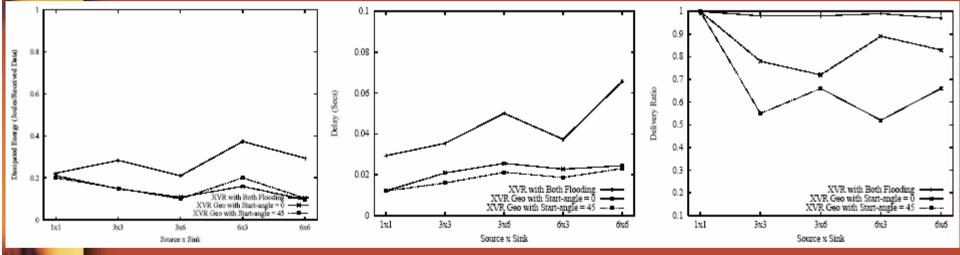

Delivery ratio

New Visiting-pattern 1 Subscription (sink): Flooding Publication (source): Flooding New Visiting-pattern 2 Subscription (sink): R-Flooding Publication (source): R-Flooding

2005.12.23

29

• New Routing service1 vs. Probable visiting-pattern


Dissipated Energy ratio

Delivery ratio

Probable visiting-pattern Subscription (sink): R-Flooding (TTL = 5, 6) Publication (source): Randomly choose neighbors to forward packets (50%)

 New Routing service1 vs. Geographic forwarding visiting-pattern (TTDD)

Dissipated Energy ratio

Delay

Delivery ratio

Geographic forwarding visiting-pattern Subscription (sink): send in 4 straight lines along certain angle (starting angle = 0, 45) (step angle = 90) Publication (source): R-Flooding (TTL = 5)

Conclusions

- This paper proposes a general routing service for sensor networks.
- Routing overhead can be reduced by changing the visiting-pattern parameters.
- Experiments with XVR can answer some research questions
 - Which routing algorithm performs best under what application and network condition.

Discussions

- XVR for forwarding-based routing services is not done.
- XVR is not fit for sensor networks
 - Control packets are too big
- We can use XVR as our testing platform to find which routing algorithm is suitable for our projects.
- Research topic:
 - Automatic and concurrent routing protocols in heterogeneous networks.