IEEE 802.11 Task Group E MAC Enhancement Proposal -- Tiered Contention Multiple Access (TCMA)

Mathilde Benveniste

AT&T Labs - Research

Outline

- Introduction
- Tiered Contention Multiple Access
- Simulation Result
- Conclusion

Introduction

Summarizing Proposal Authors

- Virtualized DCF (VDCF)
 - AT&T, Agere System, Atheros, Intersil, Lucent
- Probability DCF (PDCF)
 - TI -
- TCMA
 - AT&T
- Enhanced Channel Access
 - AT&T, Agere System, Atheros, Intersil, Lucent, TI

- History
 - DCF
 - Single Contention Windows
 - VDCF
 - Multiple Contention Windows
 - Contention Offset (Multiple IFSs)
 - Internal Contention

Introduction

History(con't)

pDCF

- Dynamic Tuning Backoff time according to Traffic Category Permission Probabilities (TCPP)
- No Internal Contention
- TCMA
 - UAT (Non-decrementing offset)
 - UC Update/Packets Aging
 - Decreasing retransmission CW

Introduction

- Tiered Contention Multiple Access
- Simulation Result
- Conclusion

TCMA (New Terms)

- Universal Station (USTA):
 - Universal station refers to either an STA or an ESTA
- Urgency Class (UC):
 - Urgency classes are a mechanism by which the MAC differentiates frames of different priorities and traffic categories. Each priority value is mapped to an urgency class.
- Urgency Arbitration Time (UAT) / Arbitration Slot Count (ASC):
 - UAT = SIFS + ASC*SlotTime

TCMA (New Terms) (con't)

TLT: Transmit LifeTime

- Indicating the maximum number of time units (TUs) allowed to transmit an MSDU of urgency class i.
- Packets will be discarded according to this timer, not number of retransmission.

Priority to Urgency Class Mapping

Priority Value	Urgency Class	
1	0	
2	0	
0 (Default)	1	
3	1	
4	2	
5	2	
6	3	
7	3	

TCMA (Feature)

- UAT
- Aging
- Scheduling (Internal Contention)
- CW

BCPT = backoff counter preparation time BCUT = backoff counter update time

TCMA (Aging)

- Averting Packet Aging
 - There are nPC=8 priority classes defined for all traffic packets which are permanently assigned to a packet once generated.
 - There are nUC=N urgency classes employed for channel contention

TCMA (Aging) (con't)

Averting Packet Aging

- The urgency class of a packet is updated in real time so that it
 - reflects both the priority class of the packet and the speed with which packets of different traffic classes and ages (the time since arrival at the queue) must be transmitted
 - relies on the performance observed in real time

TCMA (Aging) (con't)

Averting Packet Aging

TCMA (Scheduling)

- Scheduling of Competing Traffic Stream at a Node
 - Parallel queues shall be maintained for each class at a node, each adhering to backoff principles consistent with that class
 - Packets will change queues when their urgency classifications are adjusted
 - A packet will leave its queue if its transmission is cancelled due to excessive latency; the age threshold, aAgeLimit, will be class dependent

TCMA (Scheduling) (con't)

- Scheduling of Competing Traffic Stream at a Node
 - When a packet's backoff counter becomes 1 it shall be placed in the node's access buffer; in case of a tie, the higher urgency packet is selected
 - Packets generated by stations with multiple traffic types will thus not be disadvantaged

TCMA (Scheduling) (con't)

Scheduling of Competing Traffic Stream at a Node

TCMA (CW)

- Contention Windows Selection Procedure
 new CW_i =
 [((current CW_i + 1) x (aCWPFactor_i/16)] 1

 where i is the urgency class of MPDU being retried
 - After every successful attempt to transmit an MSDU or MMPDU of urgency class i, the associated CW_i shall again take the value (aCWSize_i – 1)
 - Each time an MSDU or MMPDU of urgency class i is discarded, the associated CW_i shall also take the value (aCWSize_i 1)

TCMA (Comparison)

Basic Contention Resolution

- A backoff counter is drawn from a random distribution (P-DCF, V-DCF)
- Adaptation to Traffic Intensity: Control Mechanism
 - Distributed: A node (STA or AP) updates traffic from local information as needed

TCMA (Comparison) (con't)

Class Differentiation

- By Initial Backoff Parameters: The parameter (window size) of the starting backoff distribution vary by class (P-DCF, VDCF)
- By Arbitration Time: The waiting time to start countdown after a transmission (DIFS for legacy) varies by class (No conflict)
- By Retrial Backoff Parameters: The rules to update the backoff distribution following collision vary by class(No conflict)
- By Dwell-Time Limit: The maximum time a packet may spend attempting transmission varies by class(No conflict)

TCMA (Comparison) (con't)

- Averting Packet Aging
 - Urgency Class Upgrade: Packets in certain classes are upgraded dynamically [as their age increases] to reflect their transmission urgency (No conflict)
 - Packet Expiration: Packets are eliminated from queue when queueing times reach class-specific thresholds (No conflict)
- Scheduling of Competing Traffic Streams at a Node
 - Parallel Queues: Class specific queues are maintained at a node with own backoff countdown(No conflict)

- Introduction
- Tiered Contention Multiple Access
- Simulation Result
- Conclusion

- TCMA and V-DCF are compared for two network configurations and various traffic loads
- Three priority classes are considered: High, Medium, and Low
 - Packets from legacy stations are treated the same as medium priority packets
- The following statistics are plotted for stream aggregates referred to as "calls":
 - Total throughput for all calls (bits per sec)
 - Goodput by call (bits per sec)
 - Goodput/Application load by call
 - Data sent by call (bits per sec)
 - Dropped traffic by call (bits per sec)
 - Media access delay (queueing plus contention time) by call (sec)
 - Retransmissions by call (packets per sec)

Class Description

Class	UAT	Initial	Persistence
Name		Backoff Range	Coefficient*
ТСМА Тор	SIFS +TimeSlot	[1, 15]	1.5
Medium [Legacy]	SIFS+2*TimeSlot	[0,31]	2
Low	SIFS+3*TimeSlot	[0,31]	2
VDCF Top	SIFS+2*TimeSlot	[0, 15]	2
Medium [Legacy]	SIFS+2*TimeSlot	[0, 31]	2
Low	SIFS+2*TimeSlot	[10, 41]	2

Traffic

8 stations generate 4 bi-directional streams; stream load split 1-to-2 between two directions

<u>WLAN Parameters</u> DS, 11 Mbps channel buffer size=2.024 Mbits; no fragmentation RTS/CTS suppressed; max retry limit=7

QoS-Enhanced MAC

QoS-Enhanced MAC

2m

Conclusion

Introduction

- Tiered Contention Multiple Access
- Simulation Result
- Conclusion

Conclusion

- TCMA encompasses the other two proposals, adding more features
 - UATs prevent collisions by packets of different priorities in congestion (high priority goes first)
 - Fewer collisions, greater throughput
 - Reduced delay
- Provides greater flexibility for class differentiation in presence of legacy
- Class upgrades enable better compliance with QoS and fairness objectives