A Scalable Content-Addressable Network

SIGCOMM'01

Introduction

- Locating queried files is essential to emerging peer-to-peer file sharing systems.
 Napster, Gnutella, Ezpeer, Kara, ...
- The Content-Addressable Network (CAN) proposed herein is a scalable indexing mechanism with additional robustness and low-latency properties.

Applications

- Large scale storage systems
 OceanStore, Farsite, Publius
- Name resolution
 - -DNS
- Grass-roots Content Distribution
 "RAID meets the Web"

Features

- Operations with hash tables
 - Insertion, lookup, deletion of (key, value) pairs
- Zone of node
 - Each CAN node holds a chunk(zone) of the entire hash table and information of adjacent zones.
- Routing of requests
 - Requests for a particular key are routed to the CAN node whose zone contains that key.
- CAN is completely distributed, scalable, and fault-tolerant.

Infrastructure

• A *d*-dimensional Cartesian coordinate space dynamically partitioned into zones

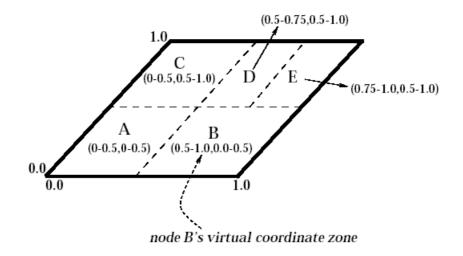
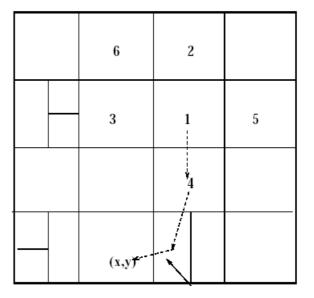


Figure 1: Example 2-d space with 5 nodes


Infrastructure

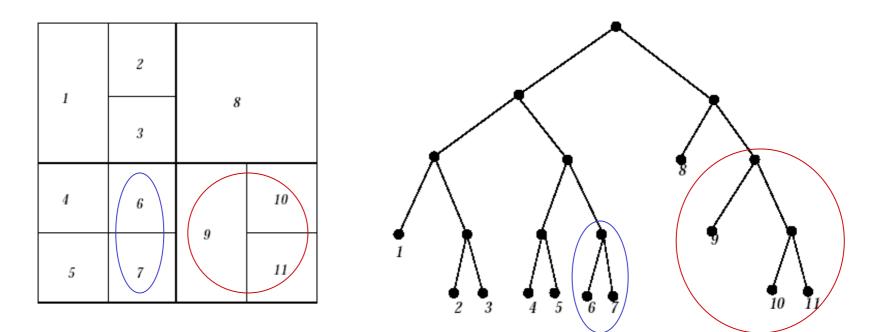
- For a (key, value) pair (K, V):
 - K is mapped onto point P by hash function
 - (K, V) is stored in the node whose zone contains P
- To retrieve the (K, V) pair:
 - Node i applies same hash function to map K onto P
 - Retrieve (K, V) from node i if P belongs to zone(i)
 - Else, route K to the node whose zone contains P

Routing

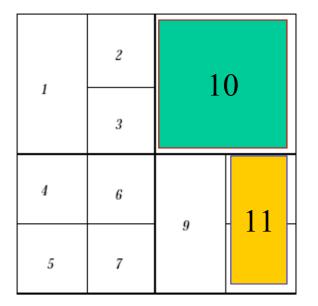
- Straight line from source to destination
- Coordinate routing table
 - IP addresses and coordinate zone of neighbors

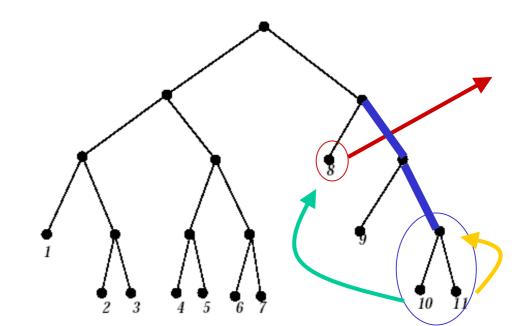
Neighbors in d-dimensional coordinate space: •Overlap along d-1 D •Abut along one D

CAN Construction

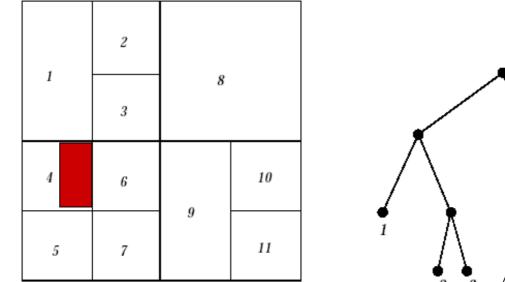

- When a new node joins:
 - Bootstrap
 - DNS->bootstrap node->CAN nodes
 - Find a zone
 - random point->JOIN->zone splitting->pairs transfer
 - Join the routing
 - Neighbor adjustment->UPDATE
 - -O(d) regardless of N

CAN Maintenance

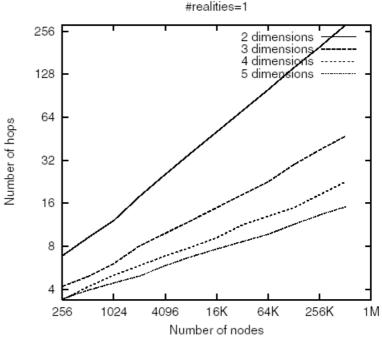

- When a node leaves:
 - Either neighboring node or node with least-size zone takes over the left zone.
- When failures occur:
 - Periodic UPDATE messages
 - Takeover algorithm
 - TAKEOVER message
 - Takeover timer

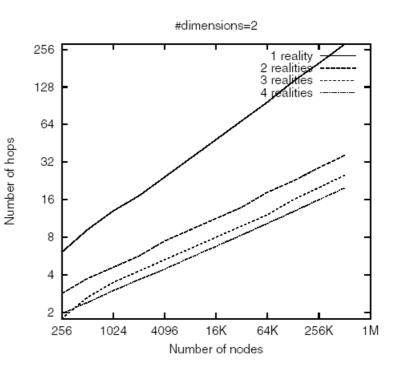

CAN Maintenance

• Background zone reassignment

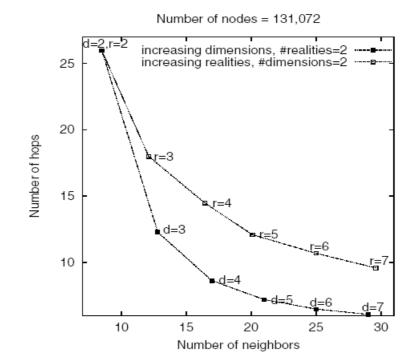


Zone Reassignment


Zone Reassignment


Multiple Dimensions

- Path length: $O(dN^{1/d})$
- Neighbor: O(d)
- Total latency: >
- Fault tolerance: <
- Routing table: <



Realities

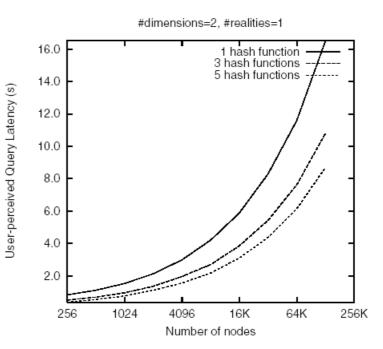
- Multiple coordinate spaces
- Path length: >
- Neighbor: O(rd)
- Total latency: >
- Fault tolerance: <
- Availability: O(r)

Dimensions v.s. Realities

Routing Metrics

- Round Trip Time (RTT)
- Total latency: >

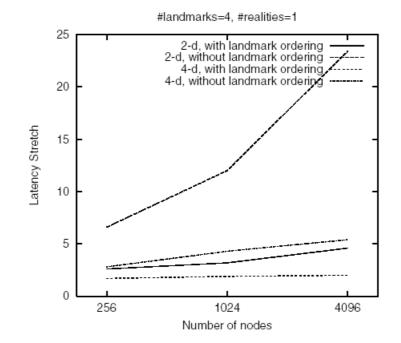
Number of	Non-RTT-weighted	RTT-weighted
dimensions	routing (ms)	routing (ms)
2	116.8	88.3
3	116.7	76.1
4	115.8	71.2
5	115.4	70.9


Zone Overloading

- Path length: O(1/p)
- Neighbor: O(pd)
- Total latency: >
- Fault tolerance: <
- Availability: O(p)

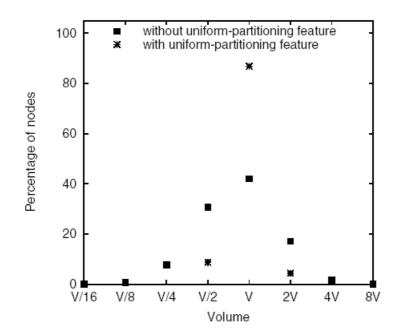
Number of nodes per zone	per-hop latency (ms)
1	116.4
2	92.8
3	72.9
4	64.4

Multiple Hash Functions


- Total latency: >
- Availability: O(k)

CAN over IP Topology

- m landmarks (DNS servers)
- m! ordering by RTT to m landmarks
- m! equal size portions
 m at 1st D, m-1 at 2nd D, ...
- A new node chooses random point P in the portion associated with its landmark ordering.


CAN over IP Topology

• Uneven distribution (interesting!)

Uniform Partitioning

• Volume balancing

Performances

Parameter	"bare bones"	"knobs on full"
	CAN	CAN
d	2	10
r	1	1
р	0	4
k	1	1
<i>RTT</i> weighted routing metric	OFF	ON
Uniform partitioning	OFF	ON
Landmark ordering	OFF	OFF

Metric	"bare bones" CAN	"knobs on full CAN"
path length	198.0	5.0
# neighbors	4.57	27.1
# peers	0	2.95
IP latency	115.9ms	82.4ms
CAN path latency	23,008ms	135.29ms