
Modern Techniques on 
Improving the GNet

J. L. Chiang
MNet Lab.

Dec. 2, 2004



Outlines

• Connecting GNet
• Gnutella messages
• Pong caching
• Flow control
• Ultrapeer system
• Query Routing Protocol
• Emerging P2P related products
• Gnutella2



Terminologies

• Servent (SERVer+cliENT)
– Client, servant
– Peer, node, host

• Message
– Packet, descriptor

• GUID (Globally Unique Identifier): 16-byte
• Gnutella Network (GNet)
• Gnutella Development Forum (GDF)

– http://groups.yahoo.com/group/the_gdf



Bootstrapping
• Launch the client and load the host cache.
• Try to connect to the GNet, using the host cache. 
• If after X seconds, there's no connection to the GNet, query a 

random GWebCache.
• Wait for at least Y seconds before sending a request to another 

GWC (it may happen that the first chosen GWC is down, or very 
slow to answer).

• After Y seconds, if no results have been received from the first GWC 
call, call a new GWC each Z seconds, until a response is received 
from one of them.

• Once results have been received from (at least) one GWC, the 
servent SHOULD NOT send a new request during the next session, 
unless the host cache is empty (which should not happen if there is 
an initial host cache provided with the software and no option to 
clear the host cache is available).

• Suggested values in seconds for X, Y and Z are respectively 5, 10, 2.



Host Cache
• In order to help the bootstrap process, a servent

SHOULD implement a hosts cache, keeping a few 
hundreds hosts on the disc.

• It is filled with hosts grabbed from GWebCache calls, 
from X-Try and X-Try headers, from Pongs, and 
optionally from QueryHits.

• A starting hosts list SHOULD be distributed with the 
client, filled with known servents having a regular activity 
on the GNet, so that even the very first time the servent
is launched, it will be able to use the host cache. 



GWebCache (GWC)
• The cache is a program (script) placed on any web 

server that stores IP addresses of hosts in the Gnutella 
network and URLs of other caches.

• Gnutella clients connect to a cache in their list randomly. 
They send and receive IP addresses and URLs from the 
cache.

• With the randomized connection it is to be assured that 
all caches eventually learn about each other, and that all 
caches have relatively fresh hosts and URLs.

• The concept is independent from Gnutella clients. 



Initiating a Connection

• The X-Try header is not shown here.



X-Try Header
• Every servent SHOULD send an X-Try header during the 

handshake.
• This header gives a list of hosts to which the servent can 

attempt to connect, allowing it to get new host addresses 
without using the GWebCache.
– X-Try: 1.2.3.4:1234, 1.2.3.5:6346, 1.2.3.6:6347 

• A servent SHOULD send a reasonable number of hosts, 
common values are between 10 and 20.



Gnutella Messages
• Descriptor
• Ping (0x00)

– Used to actively discover hosts on the network. A servent
receiving a Ping message is expected to respond with one or 
more Pong messages.

• Pong (0x01)
– The response to a Ping. Includes the address of a connected 

Gnutella servent, the listening port of that servent, and 
information regarding the amount of data it is making available to 
the network.

• Query (0x80)
– The primary mechanism for searching the distributed network. A 

servent receiving a Query message will respond with a Query Hit 
if a match is found against its local data set.



Gnutella Messages
• QueryHit (0x81)

– The response to a Query. This message provides the recipient 
with enough information to acquire the data matching the 
corresponding Query.

• Push (0x40)
– A mechanism that allows a firewalled servent to contribute file-

based data to the network.

• Bye (0x02)
– An optional message used to inform the remote host that you are 

closing the connection, and your reason for doing so.



GGEP
• The Gnutella Generic Extension Protocol (GGEP) allows 

arbitrary extensions in Gnutella messages. 
• Flags:

– bit7: Last Extension.
– bit6: Encoding.
– bit5: Compression.
– bit4: Reserved.
– bits3-0: ID Len Value 1-15 can be stored here.

• ID: The raw binary data in this field is the extension ID. 
• Data Length: This is the length of the raw extension data. 
• Extension Data: The actual extension data.



Pong Caching
• Pong caching reduces bandwidth consumption in the 

Ping-Pong network discovery phase.
• For each connection an array of Pong messages are 

stored.
• When a Pong comes in, it overwrites the oldest stored 

Pong in array of the connection the Pong came from.
• The information that must be stored for each Pong is:

– IP Address
– Port number
– Number of files shared
– Number of kilobytes shared
– GGEP extension block (if present)
– Hops value



Pong Caching
• When a Ping message is received (TTL>1 and it was at 

least one second since another Ping was received on 
that connection), a servent responds with a number of 
(e.g. 10) Pong messages.

• Incoming pings with TTL=1 and Hops=0 or 1 is replied 
to with a single pong containing information about the 
local host.

• Pings with TTL=2 and Hops=0 (Crawler Ping) are 
replied to with one pong about the local host, and one 
about each other host the local host is connected to. 



Search Criteria (Query)
• The Search Criteria is a string of keywords.
• A space is the standard separator between words.
• Regular expressions are not supported and common 

regular expression "meta- characters" such as "*" or "." 
will either stand for themselves or be ignored.

• The matching SHOULD be case insensitive.
• Empty queries or queries containing only 1-letter words 

SHOULD be ignored.
• Servents MAY ignore queries whose Search Criteria is 

shorter than a chosen length to ignore too broad 
searches.

• Query messages with TTL=1, hops=0 and Search 
Criteria=“ “ (four spaces) are used to index all files a 
host is sharing.



Flags Field Semantics (Query)

• bit15: Flags field semantics.
• bit14: Firewalled indicator.
• bit13: XML Metadata.
• bit12: Leaf Guided Dynamic Query.
• bit11: GGEP "H" allowed.
• bit10: Out of Band Query.
• bit9: Reserved for a future use.
• bits0-8: Indicates the maximum number of 

query hits expected, 0 if no maximum.



Sending and Forwarding Query 
Messages

• Query messages are usually sent when the user initiates a search. 
• A servent MAY also create Queries automatically, to find more 

locations of a resource for example. If doing so the servent MUST 
be very careful not overload the network. A servent SHOULD not 
send more than one automatic query per hour.

• Servents SHOULD NOT allow the user to create a large amount of 
queries by repeatedly clicking on a button.

• Servents SHOULD watch queries originating from its neighbors 
(Hops=0) If those queries are too frequent, are duplicates or indicate 
bad servents behavior in any other way, the servents SHOULD 
drop those queries or even close the connection.

• The TTL value of a new query created by a servent SHOULD NOT 
be higher than 7, and MUST NOT be higher than 10. The hops 
value MUST be set to 0. 



EQHD (QueryHit)
• x: RECOMMENDED extra block (EQHD or QHD).

– Bytes0-3: Vendor Code.
– Byte4: Open Data Size.
– X: Open Data.

• bits7,6: Reserved for future use
• Bit5: flagGGEP
• Bit4: flagUploadSpeed
• Bit3: flagHaveUploaded
• Bit2: flagBusy
• Bit1: Reserved for future use
• Bit0: flagPush

• x: Private data



Bye
• Bytes0-1: Code.

– 2xx The User did nothing wrong, but the servent chose to close 
the connection: it is either exiting normally (200), or the local 
manager of the servent requested an explicit close of the 
connection (201).

– 4xx The User did something wrong, as far as the servent is 
concerned. It can send packets deemed too big (400), too many 
duplicate messages (401), relay improper queries (402), relay 
messages deemed excessively long- lived [hop+TTL > max] 
(403), send too many unknown messages (404), the node 
reached its inactivity timeout (405), it failed to reply to a ping with 
TTL=1 (406), or it is not sharing enough (407).

– 5xx The servent noticed an error, but it is an "internal" one. It can 
be an I/O error or other bad error (500), a protocol 
desynchronization (501), the send queue became full (502).

• Bytes2-x: NULL-terminated Description String. 



Flow Control
• Implement an output queue, listing pending outgoing 

messages in FIFO order. 
• As long as the queue is less than, say, 25% of its max 

size (in bytes queued, not in amount of messages), do 
nothing. 

• If the queue gets filled above 50%, enter flow-control (FC) 
mode.

• In FC mode, all incoming queries on the connection are 
dropped. The rationale is that we would not want to 
queue back potentially large results for this connection 
since it has a throughput problem.



Message Priority
• Messages to be sent to the node (i.e. queued on the 

output queue) are prioritized:
– For broadcasted messages, the more hops the packet has 

traveled, the less priority it is. Or the less hops, the more priority. 
This means your own queries are the most priority (hops = 0).

– For replies (query hits), the more hops the packet has traveled,
the more priority it is. This is to maximize network usefulness. 
The packet was relayed by many hosts, so it should not be 
dropped or the bandwidth it used would become truly wasted.

– Individual messages are prioritized thusly, from the most priority 
to the least: Push, Query Hit, Pong, Query, Ping. The Bye 
message being special, it is always sent (i.e. the queue cannot 
be in FC mode since it needs to be cleared before sending Bye).



Ultrapeer System
• Originally, all Gnutella nodes were connected to each 

other randomly. It worked fine for users with broadband 
connections, but not for users with slow modems. (66%)

• Ultrapeers are connected to each other and to "normal" 
Gnutella hosts. Ultrapeers maintain many (10-100) leaf 
connections, as well as a small (<10) number of 
connections to other ultrapeers. 

• A leaf keeps only a small number of connections open, 
and that is to ultrapeers. Leaves MUST NOT connect to 
more than 3 ultrapeers by default. Leaves SHOULD 
make it difficult for the user to adjust these defaults and 
MUST NOT ever allow the user to connect to more than 
10 ultrapeers.



Ultrapeer System
• An ultrapeer acts as a proxy to the Gnutella network for 

the leaves connected to it.
• Ultrapeers shield leaf nodes from virtually all ping and 

query traffic in one of two ways:
– Reflector indexing: Ultrapeers periodically send an indexing 

query to leaf nodes. Leaf nodes respond with a query reply 
naming all shared files. The ultrapeer uses these replies to build 
an index of its leaves’ contents. The ultrapeer then responds to 
queries on behalf of leaf nodes, shielding them from all query 
traffic.

– QRP routing: leaf nodes periodically send ultrapeers query 
routing tables using LimeWire’s proposed Query Routing 
Protocol (QRP). Ultrapeers then forward queries only to those 
leaf nodes whose QRP table has a corresponding entry. Leaves 
respond in the normal manner. Ultrapeers do not propogate
QRP tables amongst themselves. 



QRP
• At the leaf node level:

– Break all the resource names into individual words. A word is 
made of a consecutive sequence of letters and digits.

– Hash each word with a well-known hash function and insert a 
"present" flag in the corresponding hash table slot. Note that this 
hash table is a big array, and we don't store the key, only the fact 
that a key ended up filling some slot. All words are lower-cased 
and all accents are removed from them, so that only ASCII
characters remain. Only those words that are made of at least 3 
letters are retained.

– All words are re-hashed with their trailing 1, 2, or 3 letters 
removed, provided the word length after such trimming is at least 
3 letter long. This is a simple attempt to remove plural from 
words. Optionally, nodes can chop off more letters from the end, 
provided that each hashed word is at least 3 character long.

– The "boolean vector" built at later stage is optionally 
compressed, broken up in small messages, and sent mixed with 
regular GNet traffic to the ultrapeer. 



QRP
• At the Ultrapeer level:

– Until the whole "boolean vector" is received from a leaf node, all 
queries are forwarded to that node.

– When the "boolean vector" is fully received, it is going to be used 
as the Query Routing table for that leaf node: queries are 
broken into individual words, all accentuated letters are removed.

– For each leaf node with a Query Routing table:
• Each word is then hashed and looked up in the Query Routing table.
• Depending on the query matching rules, either ALL the words will

be required to be found in the Query Routing, or only some of them, 
to declare a Query Routing Hit.

• Only those queries that were declared a Hit at the previous stage 
will be forwarded to a given leaf node. 



Adv’s of Using QRP
• Better QHD support: because leaf nodes are given the 

chance to respond to all queries, they can provide up-to-
the-minute information in the QHD, such as estimated 
download speed and busy status. 

• Update efficiency: because QRP tables eliminate 
redundant keywords and add compression, they are 
likely to be significantly smaller than replies to indexing 
queries. Furthermore, a leaf node only needs to send 
incremental QRP updates when its shared files have 
changed. In contrast, a reflector-style ultrapeer would 
need to periodically re-index all of the leaves’ files—this 
takes more bandwidth. 



Adv’s of Using QRP
• CPU efficiency: it is very cheap (constant time) for a 

ultrapeer to decide whether to forward a query to a leaf 
node with the QRP proposal. The reflector-style scheme 
can be implemented efficiently, but it is considerably 
more difficult. 

• Privacy: ultrapeers do not actually know what files are 
shared by leaf nodes—only those files’ hashes. 

• Ease of implementation: LimeWire has already 
implemented QRP, and the code is available to the 
public under the GNU Public License (GPL). Maintaing a 
single QRP table per connection is easier to implement 
than building a “virtual file manager” for all connections. 



Incremental QRP Updates

101101... 

 
 2 9 3 ... 

 
 4 8 3 ... 

 
 2 -1 0 ... 

1/3 1011 

2/3 0111 

3/3 0001 

old route table 

new route table 
patch 
array 

compressed 
patch 

PATCH 
messages 

send 

receive 

00101111... 
patch 
string 



Ultrapeer Election
• Not firewalled.
• Suitable operating system.
• Sufficient bandwidth.
• Sufficient uptime.
• Sufficient RAM and CPU speed.

• If the above criteria are met, a node is said to be 
ultrapeer capable.

• Whether an ultrapeer capable node will actually become 
an ultrapeer depends on if there is need for more 
ultrapeers on the network, and on how well the above 
criteria are met. 



Ultrapeer Handshaking
• X-Ultrapeer:

– "True" signals that node is an ultrapeer, "False" signals that the 
node wants to be a shielded leaf node.

• X-Ultrapeer-Needed:
– Used to balance the number of ultrapeers.

• X-Try-Ultrapeers:
– Like X-Try, but contains only addresses of ultrapeers.

• X-Query-Routing:
– Signals support for the Query Routing Protocol. The header 

value is the QRP version (curretly 0.1). 



Leaf to Ultrapeer



Leaf to Leaf
• Case 1:

• Case 2:



Ultrapeer to Ultrapeer
• Case 1:

• Case 2:



File Transfer
• Result Set:

– File Index: 2468
– File Size: 4356789
– File Name: Foobar.mp3

• HTTP download request:
– GET /get/2468/Foobar.mp3 HTTP/1.1
– User-Agent: Gnutella
– Host: 123.123.123.123:6346
– Connection: Keep-Alive
– Range: bytes=0-

• Reply:
– HTTP/1.1 200 OK
– Server: Gnutella
– Content-type: application/binary
– Content-length: 4356789
– DATA…



File Transfer
• The most important features for Gnutella, range requests and Persistent 

Connections MUST be supported.

• Range request
– GET /get/2468/Foobar.mp3 HTTP/1.1
– User-Agent: Gnutella
– Host: 123.123.123.123:6346
– Connection: Keep-Alive
– Range: bytes=4932766-5066083

• Reply
– HTTP/1.1 206 Partial Content
– Server: Gnutella
– Content-Type: audio/mpeg
– Content-Length: 133318
– Content-Range: bytes 4932766-5066083/5332732
– DATA…



Firewalled Servents
• If a direct connection cannot be established, the servent

attempting the file download may request that the 
servent sharing the file "push" the file instead.

• A servent can request a file push by routing a Push 
request back to the servent that sent the QueryHit
message describing the target file.

• The servent that is the target of the Push request 
(identified by the Servent Identifier field of the Push 
message) SHOULD, upon receipt of the Push message, 
attempt to establish a new TCP/IP connection to the 
requesting servent.
– GIV <File Index>:<Servent Identifier>/<File Name><cr><lf> 

• The servent that sent the GIV MUST allow the client to 
request any file, and not just the one specified in the 
Push message.



Busy Servents & Upload Queueing

• Servents whose upload bandwidth is already saturated 
with transfers MAY reject a download request by 
returning the 503 response code.

• If a transfer is interrupted, the serving servent SHOULD 
keep the allocated slot/bandwidth reserved for at least 
one minute. The downloader would then be allowed to 
reconnect and resume the transfer.

• Clients which support queues send "X-Queue: 0.1", 
which simply tags the request as a candidate for queuing
– X-Queue: position=2,length=5,limit=4,pollMin=45,pollMax=120

• Upload queues represent an important step for the 
evolution of Gnutella because they reward users who 
have waited for a file, rather than a "luck of the draw" 
approach which (if anything) rewards users who abuse 
the system by requesting too often, etc. 



Active Queuing Extension
• The downloader can see their place in the queue change 

as they move towards position #1, so even if the queue 
is long, at least progress can be observed.

• Because the HTTP request is reissued periodically, the 
client is able to request the most appropriate "Range" 
each time.

• By requiring the requesting client to maintain a 
connection, there is no need to hold open upload 
positions for a request that may never come.

• The pollMin and pollMax time variables can be made 
proportional to the position within the queue.

• Query-hit output MAY be adjusted based on the state of 
the upload queues.



Sharing
• Servents that are able to download files MUST also be 

able to share files with others.
• Servents SHOULD encourage users to share files.
• Servents SHOULD, by default, share the directory where 

downloaded files are placed.
• Servents SHOULD also share new downloaded files 

without waiting for the servent to be restarted.
• Servents SHOULD avoid changing the index numbers of 

shared files.
• Partial files MAY be shared in a way the makes it clear to 

other servents that the file is incomplete. 



BitTorrent Overview
• BitTorrent is a protocol for distributing files.
• It identifies content by URL and is designed to integrate 

seamlessly with the web.
• Its advantage over plain HTTP is that when multiple 

downloads of the same file happen concurrently, the 
downloaders upload to each other, making it possible for 
the file source to support very large numbers of 
downloaders with only a modest increase in its load.



BitTorrent Overview



Magnet Overview
• Magnet links allow users to directly download large 

media files saving website creators and bloggers money 
on bandwidth costs and effectively propagating files on 
p2p networks that attract millions of users per day.

• They are supported by the most popular p2p applications 
including: Kazaa Media Desktop, Limewire, Morpheus, 
Shareaza, Bearshare, Xolox.

• Magnet links can also be used to initiate searches.



Magnet in KaZaA



Bitzi Overview
• Bitzi is a website where people cooperate to identify, 

describe, and discover files of all types. 
• With Bitzi:

– You can look up descriptions, comments, and ratings about your 
files – or contribute such info yourself.

– Our precise digital fingerprints match info to exact files, so you 
can distinguish between similar files and search for the very best 
versions.

– File-sharing tools can assure you of a file's contents before you 
begin downloading.

– Infected or mislabeled files can be flagged, and so discovered or 
ignored before doing any harm.

• The Bitzi catalog is an open resource built by a 
community of fans, developers, and creators.



Bitprint
• http://bitzi.com/lookup/»bitprint«
• http://bitzi.com/lookup/BCLD3DINKJJRGYGHIYAX7HG5HXSM3XN

H.E4IHTEMZIJE4NBCWSBZ6TIWQTDGYYXVPGIRJ5KQ



G2
• Gnutella2 is a modern and efficient peer-to-peer network 

standard and architecture designed to provide a solid 
foundation for distributed global services such as person to 
person communication, data location and transfer and other 
future services.

• The Gnutella2 Network is perhaps the most easily 
recognised component. It is a new high-performance peer to 
peer network architecture upon which a variety of distributed 
applications can be built, such as file sharing applications, 
communication tools, etc. 

• The Gnutella2 Standard is a set of requirements for building 
applications which operate on the Gnutella2 network in 
different capacities. It specifies the minimum compliance level 
required to be recognised as a Gnutella2-compatible
application. Compliance with a Gnutella2 Standard ensures 
participating applications provide a minimum acceptable level 
of service to other network participants.



Common Gnutella2 Standard
• Bidirectional TCP stream connections (stream compression 

OPTIONAL) 
• Bidirectional reliable UDP protocol (Gnutella2 reliability layer and 

stateless compression REQUIRED) 
• HTTP-style link negotiation, exchanging at least the required 

headers 
• Gnutella2 protocol support, graceful handling of unknown trees 
• Localised, UTF-8 and UNICODE decode REQUIRED, encoding to 

each optional 
• Operation in LEAF mode, additional node states OPTIONAL 
• Basic link handshaking and maintenance functionality 

(PI/PO/LNI/KHL) 
• Global node addressing scheme and routing maintenance, 

addressing children (TO) 
• Reverse (PUSH) connection response (connecting out) 
• HTTP/1.1 client and server for peer to peer transactions 



Gnutella2 Standard for File Sharing
• All of the COMMON features listed in the previous section 
• Operation in LEAF mode, additional node states OPTIONAL 
• Some form of bandwidth management scheme to keep 

network and transfer bandwidth below 95% of the user's link 
capacity - be it manually configured or some automatic 
scheme (very important to avoid flooding local connection) 

• SHA1 and TIGER ROOT URNs for all shared objects 
• XML metadata using existing schemas where appropriate 

(manual entry and peer acquired at minimum, automatic local 
collection highly recommended, service lookup optional) 

• Universal 1-bit query hash filter, at least 2^20 length, 
intelligent density management scheme (superset 
combination required if supporting hub mode) 



Gnutella2 Standard for File Sharing
• Gnutella2 object search mechanism, all client responsibilities 

and if supporting hub mode, server responsibilities too 
• Local search processing including simple query language 

(Boolean operations, quoted search terms, numeric range 
searches, interest flagging (I), local rule-based metadata 
searching) 

• Extensible hit format (URN/DN/MD/URL are REQUIRED, all 
other extensions OPTIONAL) 

• HTTP/1.1 based upload system, URN based requesting, 
partial content requests, active queuing, partial file 
uploading, timestamp protected alternate source cache and 
exchange 

• Tiger Tree volume calculation on shared files, caching on 
downloads, exchange via DIME. Local corruption detection 
OPTIONAL but recommended.



Network Components
• Node types and responsibilities for self-organizing network topology 
• TCP stream connection handshake negotiation and compression 

encoding 
• UDP reliable/semi-reliable transceiver stack and encapsulation 

protocol 
• Gnutella2 common tree packet structure (basic protocol) 
• Basic network maintenance packet types 
• Known hub cache and hub cluster cache 
• Node route cache and addressed packet forwarding 
• Query hash table, superset table and exchange packet types 
• Gnutella2 object search mechanism, client and server roles, 

forwarding rules, filtering rules, security 
• Local search responder with simple query language and metadata 
• HTTP/1.1 server for upload queuing and servicing 
• HTTP/1.1 client for download scheduling and transfer 
• User profile challenge and delivery packet types



Object Search in G2
• The search client selects an eligible hub from its global hub cache which 

has a recent timestamp, has not been contacted more recently than it 
allows, and has not yet been queried in this search. 

• If a query key is not yet available for this hub, a query key request is 
dispatched. 

• Once a query key is available, the search client sends a keyed query to the 
hub. 

• Upon receiving the query, the hub checks the query key for validity. 
• The hub then responds with a query acknowledgement packet, containing a 

list of neighbouring hubs which have now been searched and a list of 2-
hop hubs which have not yet been searched. 

• The search client adds the list of searched hubs to its "don't try again" list, 
and adds the list of "try hubs" to the global hub cache for future selection. 

• Meanwhile, the hub examines the query to make sure that it has not 
received it before. Duplicate queries are dropped. 

• The hub then matches the query against the query hash table of all 
connected nodes, and sends it to those nodes which may be able to field a 
match. 



Object Search in G2
• While this is occurring, the hub processes the query locally and returns any 

results it may have. 
• Leaves directly attached to the hub which have a potential match will have 

received the query, and process it locally. They may elect to return results 
directly to the search client, or may return their results to their hub for 
dispatch. 

• Other hubs in the hub cluster which received the query now examine it to 
ensure they have not processed it before. They do not send an 
acknowledgement. 

• Assuming it is new, the hubs match the query against the query hash tables 
of their leaves but not their neighbouring hubs. Potential leaves receive a 
copy of the query, and the hub processes it locally. 

• Once again, the hub returns its own results and may forward results for its 
leaves if they do not wish to dispatch them directly. 

• Meanwhile, the search client receives any search results generated by the 
hub cluster. 

• The search client makes a decision on whether it should continue its search. 
If so, the process starts again. 

• The search client will not requery any of the hubs in the hub cluster, 
but it has a list of nearby hubs so that the crawl can continue.



References
• T. Klingberg and R. Manfredi, Gnutella 0.6, http://rfc-

gnutella.sourceforge.net/src/rfc-0_6-draft.html
• A. Singla and C. Rohrs, Ultrapeers: Another Step Towards Gnutella 

Scalability Version 1.0, Lime Wire LLC, http://rfc-
gnutella.sourceforge.net/src/Ultrapeers_1.0.html

• C. Rohrs, Query Routing for the Gnutella Network Version 1.0, Lime 
Wire LLC, 
http://www.limewire.com/developer/query_routing/keyword 
routing.htm

• BitTorrent, http://bittorrent.com/
• Magnet, http://www.magnetlink.org/
• Bitzi, http://bitzi.com/
• Gnutella2 Developers’ Network (G2DN), http://www.gnutella2.com/


